Cargando…

AntagomiR‐29b inhibits vascular and valvular calcification and improves heart function in rats

We aimed to investigate the role of the miR‐29b and its effect on TGF‐β3 pathway in vascular and valvular calcification in a rat model of calcific aortic valve diseases (CAVD). A rat model of CAVD was established by administration of warfarin plus vitamin K. The expression levels of miR‐29b, osteoge...

Descripción completa

Detalles Bibliográficos
Autores principales: Fang, Ming, Liu, Kangyong, Li, Xinming, Wang, Yudai, Li, Wei, Li, Bin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7576293/
https://www.ncbi.nlm.nih.gov/pubmed/32845082
http://dx.doi.org/10.1111/jcmm.15770
Descripción
Sumario:We aimed to investigate the role of the miR‐29b and its effect on TGF‐β3 pathway in vascular and valvular calcification in a rat model of calcific aortic valve diseases (CAVD). A rat model of CAVD was established by administration of warfarin plus vitamin K. The expression levels of miR‐29b, osteogenic markers and other genes were determined by qRT‐PCR, Western blot and/or immunofluorescence and immunohistochemistry. The calcium content and alkaline phosphatase (ALP) activity were measured. The calcium content, ALP activity and osteogenic markers levels in calcified aorta and aortic valve were augmented compared to controls. The expression of miR‐29b, p‐Smad3, and Wnt3 and β‐catenin was significantly up‐regulated, whereas TGF‐β3 was markedly down‐regulated. However, compared with the CAVD model group, the calcium content and ALP activity in rats treated with antagomiR‐29b were significantly decreased, and antagomiR‐29b administration reversed the effects of CAVD model on the expression of miR‐29b and osteogenic markers. Inhibition of miR‐29b in CAVD rats prevented from vascular and valvular calcification and induced TGF‐β3 expression, suggesting that the miR‐29b/TGF‐β3 axis may play a regulatory role in the pathogenesis of vascular and valvular calcification and could play a significant role in the treatment of CAVD and other cardiovascular diseases.