Cargando…
Circular RNA VMA21 ameliorates sepsis‐associated acute kidney injury by regulating miR‐9‐3p/SMG1/inflammation axis and oxidative stress
Accumulating evidence suggests that circular RNAs have the abilities to regulate gene expression during the progression of sepsis‐associated acute kidney injury. Circular RNA VMA21 (circVMA21), a recent identified circular RNA, could reduce apoptosis to alleviate intervertebral disc degeneration in...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7576305/ https://www.ncbi.nlm.nih.gov/pubmed/32827242 http://dx.doi.org/10.1111/jcmm.15741 |
Sumario: | Accumulating evidence suggests that circular RNAs have the abilities to regulate gene expression during the progression of sepsis‐associated acute kidney injury. Circular RNA VMA21 (circVMA21), a recent identified circular RNA, could reduce apoptosis to alleviate intervertebral disc degeneration in rats and protect WI‐38 cells from lipopolysaccharide‐induced injury. However, the role of circVMA21 in sepsis‐associated acute kidney injury (sepsis‐associated AKI) is unknown. In this study, we first demonstrated that circVMA21 alleviated sepsis‐associated AKI by reducing apoptosis and inflammation in rats and HK‐2 cells. Additionally, to explore the molecule mechanism underlying the amelioration, after the bioinformatics analysis, we confirmed that miR‐9‐3p directly bound to circVMA21 by luciferase and RNA immunoprecipitation assay, and the effector protein of miR‐9‐3p was SMG1. Furthermore, the oxidative stress caused by sepsis‐associated AKI was down‐regulated by circVMA21. In conclusion, circVMA21 plays an important role in the regulating sepsis‐associated AKI via adjusting miR‐9‐39/SMG1/inflammation axis and oxidative stress. |
---|