Cargando…

Selective neuronal degeneration in MATR3 S85C knock-in mouse model of early-stage ALS

A missense mutation, S85C, in the MATR3 gene is a genetic cause for amyotrophic lateral sclerosis (ALS). It is unclear how the S85C mutation affects MATR3 function and contributes to disease. Here, we develop a mouse model that harbors the S85C mutation in the endogenous Matr3 locus using the CRISPR...

Descripción completa

Detalles Bibliográficos
Autores principales: Kao, Ching Serena, van Bruggen, Rebekah, Kim, Jihye Rachel, Chen, Xiao Xiao Lily, Chan, Cadia, Lee, Jooyun, Cho, Woo In, Zhao, Melody, Arndt, Claudia, Maksimovic, Katarina, Khan, Mashiat, Tan, Qiumin, Wilson, Michael D., Park, Jeehye
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7576598/
https://www.ncbi.nlm.nih.gov/pubmed/33082323
http://dx.doi.org/10.1038/s41467-020-18949-w
Descripción
Sumario:A missense mutation, S85C, in the MATR3 gene is a genetic cause for amyotrophic lateral sclerosis (ALS). It is unclear how the S85C mutation affects MATR3 function and contributes to disease. Here, we develop a mouse model that harbors the S85C mutation in the endogenous Matr3 locus using the CRISPR/Cas9 system. MATR3 S85C knock-in mice recapitulate behavioral and neuropathological features of early-stage ALS including motor impairment, muscle atrophy, neuromuscular junction defects, Purkinje cell degeneration and neuroinflammation in the cerebellum and spinal cord. Our neuropathology data reveals a loss of MATR3 S85C protein in the cell bodies of Purkinje cells and motor neurons, suggesting that a decrease in functional MATR3 levels or loss of MATR3 function contributes to neuronal defects. Our findings demonstrate that the MATR3 S85C mouse model mimics aspects of early-stage ALS and would be a promising tool for future basic and preclinical research.