Cargando…
Clinical outcomes of acute pulmonary embolectomy as the first-line treatment for massive and submassive pulmonary embolism: a single-centre study in China
BACKGROUND: Acute pulmonary embolism (PE) is one of the most critical cardiovascular diseases. PE treatment ranges from anticoagulation, and systemic thrombolysis to surgical embolectomy and catheter embolectomy. Surgical pulmonary embolectmy (SPE) indications and outcomes are still controversial. A...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7576708/ https://www.ncbi.nlm.nih.gov/pubmed/33087152 http://dx.doi.org/10.1186/s13019-020-01364-z |
Sumario: | BACKGROUND: Acute pulmonary embolism (PE) is one of the most critical cardiovascular diseases. PE treatment ranges from anticoagulation, and systemic thrombolysis to surgical embolectomy and catheter embolectomy. Surgical pulmonary embolectmy (SPE) indications and outcomes are still controversial. Although there have been more favourable SPE reports over the past decades, SPE has not yet been considered broadly as an initial PE therapy and is still considered as a reserve or rescue treatment for acute massive PE when systemic thrombolysis fails. This study aimed to evaluate the early and midterm outcomes of SPE, which was a first-line therapy for acute central major PE in one Chinese single centre. METHODS: A retrospective review of patients who underwent SPE for acute PE was conducted.Patients with chronic thrombus or who underwent thromboendarterectomy were excluded. SPE risk factors for morbidity and mortality were reviewed, and echocardiographic examination were conducted for follow-up studies to access right ventricular function. RESULTS: Overall, 41 patients were included; 17 (41.5%) had submassive PE, and 24 (58.5%) had massive PE. Mean cardiopulmonary bypass time was 103.2 ± 48.9 min, and 10 patients (24.4%) underwent procedures without aortic cross-clamping. Ventilatory support time was 78 h (range, 40–336 h), intensive care unit stay was 7 days (range, 3–13 days), and hospital stay was 16 days (range, 12–23 days). Operative mortalities occurred in 3 massive PE patients, and no mortality occurred in submassive PE patients. The overall SPE mortality rate was 7.31% (3/41). If two systemic thrombolysis cases were excluded, SPE mortality was low (2.56%,1/39), evenlthough there were 2 cases of cardiac arrest preoperatively. Patients’ right ventricle function improved postoperatively in follow-ups.There were no deaths related to recurrent PE and chronic pulmonary hypertension in follow-ups, though 3 patients died of cerebral intracranial bleeding, gastric cancer,and brain cancer at 1 year, 3 years, and 8 years postoperatively, respectively. CONCLUSIONS: SPE presented with a low mortality rate when rendered as a first-line treatment in selected massive and submassive acute PE patients. Favorable outcomes of right ventricle function were also observed in the follow-ups. SPE should play the same role as ST in algorithmic acute PE treatment. |
---|