Cargando…
Machine learning techniques for mortality prediction in critical traumatic patients: anatomic and physiologic variables from the RETRAUCI study
BACKGROUND: Interest in models for calculating the risk of death in traumatic patients admitted to ICUs remains high. These models use variables derived from the deviation of physiological parameters and/or the severity of anatomical lesions with respect to the affected body areas. Our objective is...
Autores principales: | Serviá, Luis, Montserrat, Neus, Badia, Mariona, Llompart-Pou, Juan Antonio, Barea-Mendoza, Jesús Abelardo, Chico-Fernández, Mario, Sánchez-Casado, Marcelino, Jiménez, José Manuel, Mayor, Dolores María, Trujillano, Javier |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7576744/ https://www.ncbi.nlm.nih.gov/pubmed/33081694 http://dx.doi.org/10.1186/s12874-020-01151-3 |
Ejemplares similares
-
Development of a new score for early mortality prediction in trauma ICU patients: RETRASCORE
por: Serviá, Luis, et al.
Publicado: (2021) -
Spanish trauma icu registry (RETRAUCI). final results of the pilot phase
por: Chico-Fernández, M, et al.
Publicado: (2015) -
Validation of the probability of survival using the triss methodology in the Spanish Trauma ICU registry (RETRAUCI)
por: Chico-Fernández, M, et al.
Publicado: (2015) -
Dermatological Manifestations in the Intensive Care Unit: A Practical Approach
por: Badia, Mariona, et al.
Publicado: (2020) -
A prospective pilot study using metabolomics discloses specific fatty acid, catecholamine and tryptophan metabolic pathways as possible predictors for a negative outcome after severe trauma
por: Servià, Luis, et al.
Publicado: (2019)