Cargando…
The ‘SELection End points in Communities of bacTeria’ (SELECT) Method: A Novel Experimental Assay to Facilitate Risk Assessment of Selection for Antimicrobial Resistance in the Environment
BACKGROUND: Antimicrobial resistance (AMR) is one of the most significant health threats to society. A growing body of research demonstrates selection for AMR likely occurs at environmental concentrations of antibiotics. However, no standardized experimental approaches for determining selective conc...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Environmental Health Perspectives
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7577113/ https://www.ncbi.nlm.nih.gov/pubmed/33084388 http://dx.doi.org/10.1289/EHP6635 |
_version_ | 1783598144842366976 |
---|---|
author | Murray, Aimee K. Stanton, Isobel C. Wright, Jessica Zhang, Lihong Snape, Jason Gaze, William H. |
author_facet | Murray, Aimee K. Stanton, Isobel C. Wright, Jessica Zhang, Lihong Snape, Jason Gaze, William H. |
author_sort | Murray, Aimee K. |
collection | PubMed |
description | BACKGROUND: Antimicrobial resistance (AMR) is one of the most significant health threats to society. A growing body of research demonstrates selection for AMR likely occurs at environmental concentrations of antibiotics. However, no standardized experimental approaches for determining selective concentrations of antimicrobials currently exist, preventing appropriate environmental and human health risk assessment of AMR. OBJECTIVES: We aimed to design a rapid, simple, and cost-effective novel experimental assay to determine selective effect concentrations of antibiotics and to generate the largest experimental data set of selective effect concentrations of antibiotics to date. METHODS: Previously published methods and data were used to validate the assay, which determines the effect concentration based on reduction of bacterial community (wastewater) growth. Risk quotients for test antibiotics were generated to quantify risk. RESULTS: The assay (SELection End points in Communities of bacTeria, or the SELECT method) was used to rapidly determine selective effect concentrations of antibiotics. These were in good agreement with quantitative polymerase chain reaction effect concentrations determined within the same experimental system. The SELECT method predicted no effect concentrations were minimally affected by changes in the assay temperature, growth media, or microbial community used as the inoculum. The predicted no effect concentrations for antibiotics tested ranged from [Formula: see text] for ciprofloxacin to [Formula: see text] for erythromycin. DISCUSSION: The lack of evidence demonstrating environmental selection for AMR, and of associated human health risks, is a primary reason for the lack of action in the mitigation of release of antibiotics into the aquatic environment. We present a novel method that can reliably and rapidly fill this data gap to enable regulation and subsequent mitigation (where required) to lower the risk of selection for, and human exposure to, AMR in aquatic environments. In particular, ciprofloxacin and, to a lesser extent, azithromycin, cefotaxime, and trimethoprim all pose a significant risk for selection of AMR in the environment. https://doi.org/10.1289/EHP6635 |
format | Online Article Text |
id | pubmed-7577113 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Environmental Health Perspectives |
record_format | MEDLINE/PubMed |
spelling | pubmed-75771132020-10-23 The ‘SELection End points in Communities of bacTeria’ (SELECT) Method: A Novel Experimental Assay to Facilitate Risk Assessment of Selection for Antimicrobial Resistance in the Environment Murray, Aimee K. Stanton, Isobel C. Wright, Jessica Zhang, Lihong Snape, Jason Gaze, William H. Environ Health Perspect Research BACKGROUND: Antimicrobial resistance (AMR) is one of the most significant health threats to society. A growing body of research demonstrates selection for AMR likely occurs at environmental concentrations of antibiotics. However, no standardized experimental approaches for determining selective concentrations of antimicrobials currently exist, preventing appropriate environmental and human health risk assessment of AMR. OBJECTIVES: We aimed to design a rapid, simple, and cost-effective novel experimental assay to determine selective effect concentrations of antibiotics and to generate the largest experimental data set of selective effect concentrations of antibiotics to date. METHODS: Previously published methods and data were used to validate the assay, which determines the effect concentration based on reduction of bacterial community (wastewater) growth. Risk quotients for test antibiotics were generated to quantify risk. RESULTS: The assay (SELection End points in Communities of bacTeria, or the SELECT method) was used to rapidly determine selective effect concentrations of antibiotics. These were in good agreement with quantitative polymerase chain reaction effect concentrations determined within the same experimental system. The SELECT method predicted no effect concentrations were minimally affected by changes in the assay temperature, growth media, or microbial community used as the inoculum. The predicted no effect concentrations for antibiotics tested ranged from [Formula: see text] for ciprofloxacin to [Formula: see text] for erythromycin. DISCUSSION: The lack of evidence demonstrating environmental selection for AMR, and of associated human health risks, is a primary reason for the lack of action in the mitigation of release of antibiotics into the aquatic environment. We present a novel method that can reliably and rapidly fill this data gap to enable regulation and subsequent mitigation (where required) to lower the risk of selection for, and human exposure to, AMR in aquatic environments. In particular, ciprofloxacin and, to a lesser extent, azithromycin, cefotaxime, and trimethoprim all pose a significant risk for selection of AMR in the environment. https://doi.org/10.1289/EHP6635 Environmental Health Perspectives 2020-10-21 /pmc/articles/PMC7577113/ /pubmed/33084388 http://dx.doi.org/10.1289/EHP6635 Text en https://ehp.niehs.nih.gov/about-ehp/license EHP is an open-access journal published with support from the National Institute of Environmental Health Sciences, National Institutes of Health. All content is public domain unless otherwise noted. |
spellingShingle | Research Murray, Aimee K. Stanton, Isobel C. Wright, Jessica Zhang, Lihong Snape, Jason Gaze, William H. The ‘SELection End points in Communities of bacTeria’ (SELECT) Method: A Novel Experimental Assay to Facilitate Risk Assessment of Selection for Antimicrobial Resistance in the Environment |
title | The ‘SELection End points in Communities of bacTeria’ (SELECT) Method: A Novel Experimental Assay to Facilitate Risk Assessment of Selection for Antimicrobial Resistance in the Environment |
title_full | The ‘SELection End points in Communities of bacTeria’ (SELECT) Method: A Novel Experimental Assay to Facilitate Risk Assessment of Selection for Antimicrobial Resistance in the Environment |
title_fullStr | The ‘SELection End points in Communities of bacTeria’ (SELECT) Method: A Novel Experimental Assay to Facilitate Risk Assessment of Selection for Antimicrobial Resistance in the Environment |
title_full_unstemmed | The ‘SELection End points in Communities of bacTeria’ (SELECT) Method: A Novel Experimental Assay to Facilitate Risk Assessment of Selection for Antimicrobial Resistance in the Environment |
title_short | The ‘SELection End points in Communities of bacTeria’ (SELECT) Method: A Novel Experimental Assay to Facilitate Risk Assessment of Selection for Antimicrobial Resistance in the Environment |
title_sort | ‘selection end points in communities of bacteria’ (select) method: a novel experimental assay to facilitate risk assessment of selection for antimicrobial resistance in the environment |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7577113/ https://www.ncbi.nlm.nih.gov/pubmed/33084388 http://dx.doi.org/10.1289/EHP6635 |
work_keys_str_mv | AT murrayaimeek theselectionendpointsincommunitiesofbacteriaselectmethodanovelexperimentalassaytofacilitateriskassessmentofselectionforantimicrobialresistanceintheenvironment AT stantonisobelc theselectionendpointsincommunitiesofbacteriaselectmethodanovelexperimentalassaytofacilitateriskassessmentofselectionforantimicrobialresistanceintheenvironment AT wrightjessica theselectionendpointsincommunitiesofbacteriaselectmethodanovelexperimentalassaytofacilitateriskassessmentofselectionforantimicrobialresistanceintheenvironment AT zhanglihong theselectionendpointsincommunitiesofbacteriaselectmethodanovelexperimentalassaytofacilitateriskassessmentofselectionforantimicrobialresistanceintheenvironment AT snapejason theselectionendpointsincommunitiesofbacteriaselectmethodanovelexperimentalassaytofacilitateriskassessmentofselectionforantimicrobialresistanceintheenvironment AT gazewilliamh theselectionendpointsincommunitiesofbacteriaselectmethodanovelexperimentalassaytofacilitateriskassessmentofselectionforantimicrobialresistanceintheenvironment AT murrayaimeek selectionendpointsincommunitiesofbacteriaselectmethodanovelexperimentalassaytofacilitateriskassessmentofselectionforantimicrobialresistanceintheenvironment AT stantonisobelc selectionendpointsincommunitiesofbacteriaselectmethodanovelexperimentalassaytofacilitateriskassessmentofselectionforantimicrobialresistanceintheenvironment AT wrightjessica selectionendpointsincommunitiesofbacteriaselectmethodanovelexperimentalassaytofacilitateriskassessmentofselectionforantimicrobialresistanceintheenvironment AT zhanglihong selectionendpointsincommunitiesofbacteriaselectmethodanovelexperimentalassaytofacilitateriskassessmentofselectionforantimicrobialresistanceintheenvironment AT snapejason selectionendpointsincommunitiesofbacteriaselectmethodanovelexperimentalassaytofacilitateriskassessmentofselectionforantimicrobialresistanceintheenvironment AT gazewilliamh selectionendpointsincommunitiesofbacteriaselectmethodanovelexperimentalassaytofacilitateriskassessmentofselectionforantimicrobialresistanceintheenvironment |