Cargando…
Toxicity and Immunogenicity of a Tardigrade Cytosolic Abundant Heat Soluble Protein in Mice
Tardigrades are microscopic animals well-known for their stress tolerance, including the ability to survive desiccation. This survival requires cytosolic abundant heat soluble (CAHS) proteins. CAHS D protects enzymes from desiccation- and lyophilization-induced inactivation in vitro and has the pote...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7577191/ https://www.ncbi.nlm.nih.gov/pubmed/33117164 http://dx.doi.org/10.3389/fphar.2020.565969 |
Sumario: | Tardigrades are microscopic animals well-known for their stress tolerance, including the ability to survive desiccation. This survival requires cytosolic abundant heat soluble (CAHS) proteins. CAHS D protects enzymes from desiccation- and lyophilization-induced inactivation in vitro and has the potential to stabilize protein-based therapeutics, including vaccines. Here, we investigate whether purified recombinant CAHS D causes hemolysis or a toxic or immunogenic response following intraperitoneal injection in mice. CAHS D did not cause hemolysis, and all mice survived the 28-day monitoring period. The mice gained weight normally and developed anti-CAHS D antibodies but did not show upregulation of the inflammatory cytokines interleukin-6 and tumor necrosis factor alpha. In summary, CAHS D is not toxic and does not promote an inflammatory immune response in mice under the conditions used here, suggesting the reasonability of further study for use as stabilizers of protein-based therapeutics. |
---|