Cargando…

How air quality and COVID-19 transmission change under different lockdown scenarios? A case from Dhaka city, Bangladesh

The transmission of novel coronavirus (COVID-19) can be reduced by implementing a lockdown policy, which has also been proven as an effective control measure for air pollution in the urban cities. In this study, we applied ground- and satellite-based data of five criteria air pollutants (PM2.5, NO(2...

Descripción completa

Detalles Bibliográficos
Autores principales: Rahman, Md. Siddiqur, Azad, Md. Abul Kalam, Hasanuzzaman, Md., Salam, Roquia, Islam, Abu Reza Md. Towfiqul, Rahman, Md. Mostafizur, Hoque, Mir Md. Mozammal
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier B.V. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7577272/
https://www.ncbi.nlm.nih.gov/pubmed/33129520
http://dx.doi.org/10.1016/j.scitotenv.2020.143161
Descripción
Sumario:The transmission of novel coronavirus (COVID-19) can be reduced by implementing a lockdown policy, which has also been proven as an effective control measure for air pollution in the urban cities. In this study, we applied ground- and satellite-based data of five criteria air pollutants (PM2.5, NO(2), SO(2), O(3), and CO) and meteorological factors from March 8 to May 15, 2020 (before, partial-, and full-lockdown). The generalized additive models (GAMs), wavelet coherence, and random forest (RF) model were employed to explore the relationship between air quality indicators and COVID-19 transmission in Dhaka city. Results show that overall, 26, 20.4, 17.5, 9.7 and 8.8% declined in PM 2.5, NO(2), SO(2), O(3), and CO concentrations, respectively, in Dhaka City during the partial and full lockdown compared to the period before the lockdown. The implementation of lockdown policy for containing COVID-19 transmission played a crucial role in reducing air pollution. The findings of wavelet coherence and partial wavelet coherence demonstrate no standalone coherence, but interestingly, multiple wavelet coherence indicated a strong short-term coherence among air pollutants and meteorological factors with the COVID-19 outbreak. Outcomes of GAMs indicated that an increase of 1-unit in long-term exposure to O(3) and CO (lag1) was associated with a 2.9% (95% CI: -0.3%, -5.6%), and 53.9% (95% CI: 0.2%, -107.9%)] decreased risk of COVID-19 infection rate during the full-lockdown period. Whereas, COVID-19 infection and MT (mean temperature) are modulated by a peak during full-lockdown, which is mostly attributed to contact transmission in Dhaka city. RF model revealed among the parameters being studied, MT, RH (relative humidity), and O(3) were the dominant factors that could be associated with COVID-19 cases during the study period. The outcomes reported here could elucidate the effectiveness of lockdown scenarios for COVID-19 containment and air pollution control in Dhaka city.