Cargando…
FilterDCA: Interpretable supervised contact prediction using inter-domain coevolution
Predicting three-dimensional protein structure and assembling protein complexes using sequence information belongs to the most prominent tasks in computational biology. Recently substantial progress has been obtained in the case of single proteins using a combination of unsupervised coevolutionary s...
Autores principales: | Muscat, Maureen, Croce, Giancarlo, Sarti, Edoardo, Weigt, Martin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7577475/ https://www.ncbi.nlm.nih.gov/pubmed/33035205 http://dx.doi.org/10.1371/journal.pcbi.1007621 |
Ejemplares similares
-
On the effect of phylogenetic correlations in coevolution-based contact prediction in proteins
por: Rodriguez Horta, Edwin, et al.
Publicado: (2021) -
adabmDCA: adaptive Boltzmann machine learning for biological sequences
por: Muntoni, Anna Paola, et al.
Publicado: (2021) -
Epistatic models predict mutable sites in SARS-CoV-2 proteins and epitopes
por: Rodriguez-Rivas, Juan, et al.
Publicado: (2022) -
Evaluating DCA-based method performances for RNA contact prediction by a well-curated data set
por: Pucci, Fabrizio, et al.
Publicado: (2020) -
Docker Certified Associate (DCA): Exam Guide
por: Urea, Francisco
Publicado: (2020)