Cargando…
Likelihood-free nested sampling for parameter inference of biochemical reaction networks
The development of mechanistic models of biological systems is a central part of Systems Biology. One major challenge in developing these models is the accurate inference of model parameters. In recent years, nested sampling methods have gained increased attention in the Systems Biology community du...
Autores principales: | Mikelson, Jan, Khammash, Mustafa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7577508/ https://www.ncbi.nlm.nih.gov/pubmed/33035218 http://dx.doi.org/10.1371/journal.pcbi.1008264 |
Ejemplares similares
-
Parameter inference for stochastic single-cell dynamics from lineage tree data
por: Kuzmanovska, Irena, et al.
Publicado: (2017) -
Equilibrium distributions of simple biochemical reaction systems for time-scale separation in stochastic reaction networks
por: Mélykúti, Bence, et al.
Publicado: (2014) -
Likelihood-free inference via classification
por: Gutmann, Michael U., et al.
Publicado: (2017) -
Machine Learning for Likelihood Free Inference
por: Le Pottier, Luc Tomas
Publicado: (2019) -
Bayesian Model Comparison and Parameter Inference in Systems Biology Using Nested Sampling
por: Pullen, Nick, et al.
Publicado: (2014)