Cargando…

Neurodevelopmental regression, severe generalized dystonia, and metabolic acidosis caused by POLR3A mutations

OBJECTIVE: To expand the clinical phenotype of POLR3A mutations by assessing the functional consequences of a missense and a splicing acceptor mutation. METHODS: We performed whole-exome sequencing for identification of likely pathogenic mutations in a 9-year-old female patient with severe generaliz...

Descripción completa

Detalles Bibliográficos
Autores principales: Zanette, Vanessa, Reyes, Aurelio, Johnson, Mark, do Valle, Daniel, Robinson, Alan J., Monteiro, Vaneisse, Telles, Bruno Augusto, L.R. Souza, Ricardo, S.F. Santos, Mara L, Benincá, Cristiane, Zeviani, Massimo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Wolters Kluwer 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7577545/
https://www.ncbi.nlm.nih.gov/pubmed/33134517
http://dx.doi.org/10.1212/NXG.0000000000000521
Descripción
Sumario:OBJECTIVE: To expand the clinical phenotype of POLR3A mutations by assessing the functional consequences of a missense and a splicing acceptor mutation. METHODS: We performed whole-exome sequencing for identification of likely pathogenic mutations in a 9-year-old female patient with severe generalized dystonia, metabolic acidosis, leukocytosis, hypotonia, and dysphagia. Brain MRI showed basal ganglia atrophy and presence of lactate and lipid peaks by [(1)H]-magnetic resonance spectroscopy. Expression levels of Pol III target genes were measured by quantitative real-time (qRT)-PCR to study the pathogenicity of the biallelic mutations in patient fibroblasts. RESULTS: The patient is a compound heterozygous for a novel missense c.3721G>A (p.Val1241Met) and the splicing region c.1771-6C>G mutation in POLR3A, the gene coding for the catalytic subunit of RNA polymerase III (Pol III). Aberrant splicing was observed for the c.1771-6C>G mutation. Decreased RNA expression levels of Pol III targets (HNRNPH2, ubiquitin B, lactotransferrin, and HSP90AA1) were observed in patient fibroblasts with rescue to normal levels by overexpression of the wild-type protein but not by the p.Val1241Met variant. CONCLUSIONS: Mutations in the POLR3A gene cause POLR3A-related hypomyelinating leukodystrophy with or without oligodontia or hypogonadotropic hypogonadism (HLD7, OMIM: 607694) and neonatal progeroid syndrome (OMIM: 264090), both with high phenotypic variability. We demonstrated the pathogenicity of c.1771-6C>G and c.3721G>A mutations causing an early-onset disorder. The phenotype of our patient expands the clinical presentation of POLR3A-related mutations and suggests a new classification that we propose designating as Neurodevelopmental Disorder with Regression, Abnormal Movements, and Increased Lactate.