Cargando…
A statistical framework to estimate diagnostic test performance for COVID-19
Autores principales: | Symons, R., Beath, K., Dangis, A., Lefever, S., Smismans, A., De Bruecker, Y., Frans, J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal College of Radiologists. Published by Elsevier Ltd.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7577695/ https://www.ncbi.nlm.nih.gov/pubmed/33190847 http://dx.doi.org/10.1016/j.crad.2020.10.004 |
Ejemplares similares
-
Prognostic Value and Reproducibility of AI-assisted Analysis of Lung Involvement in COVID-19 on Low-Dose Submillisievert Chest CT: Sample Size Implications for Clinical Trials
por: Gieraerts, Christopher, et al.
Publicado: (2020) -
Accuracy and Reproducibility of Low-Dose Submillisievert Chest CT for the Diagnosis of COVID-19
por: Dangis, Anthony, et al.
Publicado: (2020) -
A Bayesian framework for estimating the incremental value of a diagnostic test in the absence of a gold standard
por: Ling, Daphne I, et al.
Publicado: (2014) -
Impact of gender on extent of lung injury in COVID-19
por: Dangis, A., et al.
Publicado: (2020) -
Feasibility of using point-of-care lung ultrasound for early triage of COVID-19 patients in the emergency room
por: Narinx, Nick, et al.
Publicado: (2020)