Cargando…
Targeted sequence design within the coarse-grained polymer genome
The chemical design of polymers with target structural and/or functional properties represents a grand challenge in materials science. While data-driven design approaches are promising, success with polymers has been limited, largely due to limitations in data availability. Here, we demonstrate the...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7577717/ https://www.ncbi.nlm.nih.gov/pubmed/33087352 http://dx.doi.org/10.1126/sciadv.abc6216 |
_version_ | 1783598232446697472 |
---|---|
author | Webb, Michael A. Jackson, Nicholas E. Gil, Phwey S. de Pablo, Juan J. |
author_facet | Webb, Michael A. Jackson, Nicholas E. Gil, Phwey S. de Pablo, Juan J. |
author_sort | Webb, Michael A. |
collection | PubMed |
description | The chemical design of polymers with target structural and/or functional properties represents a grand challenge in materials science. While data-driven design approaches are promising, success with polymers has been limited, largely due to limitations in data availability. Here, we demonstrate the targeted sequence design of single-chain structure in polymers by combining coarse-grained modeling, machine learning, and model optimization. Nearly 2000 unique coarse-grained polymers are simulated to construct and analyze machine learning models. We find that deep neural networks inexpensively and reliably predict structural properties with limited sequence information as input. By coupling trained ML models with sequential model-based optimization, polymer sequences are proposed to exhibit globular, swollen, or rod-like behaviors, which are verified by explicit simulations. This work highlights the promising integration of coarse-grained modeling with data-driven design and represents a necessary and crucial step toward more complex polymer design efforts. |
format | Online Article Text |
id | pubmed-7577717 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-75777172020-11-02 Targeted sequence design within the coarse-grained polymer genome Webb, Michael A. Jackson, Nicholas E. Gil, Phwey S. de Pablo, Juan J. Sci Adv Research Articles The chemical design of polymers with target structural and/or functional properties represents a grand challenge in materials science. While data-driven design approaches are promising, success with polymers has been limited, largely due to limitations in data availability. Here, we demonstrate the targeted sequence design of single-chain structure in polymers by combining coarse-grained modeling, machine learning, and model optimization. Nearly 2000 unique coarse-grained polymers are simulated to construct and analyze machine learning models. We find that deep neural networks inexpensively and reliably predict structural properties with limited sequence information as input. By coupling trained ML models with sequential model-based optimization, polymer sequences are proposed to exhibit globular, swollen, or rod-like behaviors, which are verified by explicit simulations. This work highlights the promising integration of coarse-grained modeling with data-driven design and represents a necessary and crucial step toward more complex polymer design efforts. American Association for the Advancement of Science 2020-10-21 /pmc/articles/PMC7577717/ /pubmed/33087352 http://dx.doi.org/10.1126/sciadv.abc6216 Text en Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). https://creativecommons.org/licenses/by-nc/4.0/ https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (https://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
spellingShingle | Research Articles Webb, Michael A. Jackson, Nicholas E. Gil, Phwey S. de Pablo, Juan J. Targeted sequence design within the coarse-grained polymer genome |
title | Targeted sequence design within the coarse-grained polymer genome |
title_full | Targeted sequence design within the coarse-grained polymer genome |
title_fullStr | Targeted sequence design within the coarse-grained polymer genome |
title_full_unstemmed | Targeted sequence design within the coarse-grained polymer genome |
title_short | Targeted sequence design within the coarse-grained polymer genome |
title_sort | targeted sequence design within the coarse-grained polymer genome |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7577717/ https://www.ncbi.nlm.nih.gov/pubmed/33087352 http://dx.doi.org/10.1126/sciadv.abc6216 |
work_keys_str_mv | AT webbmichaela targetedsequencedesignwithinthecoarsegrainedpolymergenome AT jacksonnicholase targetedsequencedesignwithinthecoarsegrainedpolymergenome AT gilphweys targetedsequencedesignwithinthecoarsegrainedpolymergenome AT depablojuanj targetedsequencedesignwithinthecoarsegrainedpolymergenome |