Cargando…
Prediction scores for risk of allograft loss in patients receiving kidney transplants: nil satis nisi optimum
Long-term graft survival is the main concern of kidney transplantation. Some strategies have been tested to predict graft survival using estimated glomerular filtration rate or proteinuria at different time points, histologic assessment, non-invasive biomarkers or even machine-learning methods. Howe...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7577772/ https://www.ncbi.nlm.nih.gov/pubmed/33125003 http://dx.doi.org/10.1093/ckj/sfaa081 |
_version_ | 1783598243752443904 |
---|---|
author | Montero, Nuria Codina, Sergi Cruzado, Josep M |
author_facet | Montero, Nuria Codina, Sergi Cruzado, Josep M |
author_sort | Montero, Nuria |
collection | PubMed |
description | Long-term graft survival is the main concern of kidney transplantation. Some strategies have been tested to predict graft survival using estimated glomerular filtration rate or proteinuria at different time points, histologic assessment, non-invasive biomarkers or even machine-learning methods. However, the 'magical formulae' for allograft survival prediction does not exist yet. |
format | Online Article Text |
id | pubmed-7577772 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-75777722020-10-28 Prediction scores for risk of allograft loss in patients receiving kidney transplants: nil satis nisi optimum Montero, Nuria Codina, Sergi Cruzado, Josep M Clin Kidney J Editorial Comments Long-term graft survival is the main concern of kidney transplantation. Some strategies have been tested to predict graft survival using estimated glomerular filtration rate or proteinuria at different time points, histologic assessment, non-invasive biomarkers or even machine-learning methods. However, the 'magical formulae' for allograft survival prediction does not exist yet. Oxford University Press 2020-06-18 /pmc/articles/PMC7577772/ /pubmed/33125003 http://dx.doi.org/10.1093/ckj/sfaa081 Text en © The Author(s) 2020. Published by Oxford University Press on behalf of ERA-EDTA. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Editorial Comments Montero, Nuria Codina, Sergi Cruzado, Josep M Prediction scores for risk of allograft loss in patients receiving kidney transplants: nil satis nisi optimum |
title | Prediction scores for risk of allograft loss in patients receiving kidney transplants: nil satis nisi optimum |
title_full | Prediction scores for risk of allograft loss in patients receiving kidney transplants: nil satis nisi optimum |
title_fullStr | Prediction scores for risk of allograft loss in patients receiving kidney transplants: nil satis nisi optimum |
title_full_unstemmed | Prediction scores for risk of allograft loss in patients receiving kidney transplants: nil satis nisi optimum |
title_short | Prediction scores for risk of allograft loss in patients receiving kidney transplants: nil satis nisi optimum |
title_sort | prediction scores for risk of allograft loss in patients receiving kidney transplants: nil satis nisi optimum |
topic | Editorial Comments |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7577772/ https://www.ncbi.nlm.nih.gov/pubmed/33125003 http://dx.doi.org/10.1093/ckj/sfaa081 |
work_keys_str_mv | AT monteronuria predictionscoresforriskofallograftlossinpatientsreceivingkidneytransplantsnilsatisnisioptimum AT codinasergi predictionscoresforriskofallograftlossinpatientsreceivingkidneytransplantsnilsatisnisioptimum AT cruzadojosepm predictionscoresforriskofallograftlossinpatientsreceivingkidneytransplantsnilsatisnisioptimum |