Cargando…

Prediction scores for risk of allograft loss in patients receiving kidney transplants: nil satis nisi optimum

Long-term graft survival is the main concern of kidney transplantation. Some strategies have been tested to predict graft survival using estimated glomerular filtration rate or proteinuria at different time points, histologic assessment, non-invasive biomarkers or even machine-learning methods. Howe...

Descripción completa

Detalles Bibliográficos
Autores principales: Montero, Nuria, Codina, Sergi, Cruzado, Josep M
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7577772/
https://www.ncbi.nlm.nih.gov/pubmed/33125003
http://dx.doi.org/10.1093/ckj/sfaa081
_version_ 1783598243752443904
author Montero, Nuria
Codina, Sergi
Cruzado, Josep M
author_facet Montero, Nuria
Codina, Sergi
Cruzado, Josep M
author_sort Montero, Nuria
collection PubMed
description Long-term graft survival is the main concern of kidney transplantation. Some strategies have been tested to predict graft survival using estimated glomerular filtration rate or proteinuria at different time points, histologic assessment, non-invasive biomarkers or even machine-learning methods. However, the 'magical formulae' for allograft survival prediction does not exist yet.
format Online
Article
Text
id pubmed-7577772
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-75777722020-10-28 Prediction scores for risk of allograft loss in patients receiving kidney transplants: nil satis nisi optimum Montero, Nuria Codina, Sergi Cruzado, Josep M Clin Kidney J Editorial Comments Long-term graft survival is the main concern of kidney transplantation. Some strategies have been tested to predict graft survival using estimated glomerular filtration rate or proteinuria at different time points, histologic assessment, non-invasive biomarkers or even machine-learning methods. However, the 'magical formulae' for allograft survival prediction does not exist yet. Oxford University Press 2020-06-18 /pmc/articles/PMC7577772/ /pubmed/33125003 http://dx.doi.org/10.1093/ckj/sfaa081 Text en © The Author(s) 2020. Published by Oxford University Press on behalf of ERA-EDTA. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Editorial Comments
Montero, Nuria
Codina, Sergi
Cruzado, Josep M
Prediction scores for risk of allograft loss in patients receiving kidney transplants: nil satis nisi optimum
title Prediction scores for risk of allograft loss in patients receiving kidney transplants: nil satis nisi optimum
title_full Prediction scores for risk of allograft loss in patients receiving kidney transplants: nil satis nisi optimum
title_fullStr Prediction scores for risk of allograft loss in patients receiving kidney transplants: nil satis nisi optimum
title_full_unstemmed Prediction scores for risk of allograft loss in patients receiving kidney transplants: nil satis nisi optimum
title_short Prediction scores for risk of allograft loss in patients receiving kidney transplants: nil satis nisi optimum
title_sort prediction scores for risk of allograft loss in patients receiving kidney transplants: nil satis nisi optimum
topic Editorial Comments
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7577772/
https://www.ncbi.nlm.nih.gov/pubmed/33125003
http://dx.doi.org/10.1093/ckj/sfaa081
work_keys_str_mv AT monteronuria predictionscoresforriskofallograftlossinpatientsreceivingkidneytransplantsnilsatisnisioptimum
AT codinasergi predictionscoresforriskofallograftlossinpatientsreceivingkidneytransplantsnilsatisnisioptimum
AT cruzadojosepm predictionscoresforriskofallograftlossinpatientsreceivingkidneytransplantsnilsatisnisioptimum