Cargando…
Intrinsic molecular vibration and rigorous vibrational assignment of benzene by first-principles molecular dynamics
Vibrational assignment, which establishes the correspondence between vibrational modes and spectral frequencies, is a key step in any spectroscopic study. Due to the lack of experimental technique to directly observe the thermal vibration of atoms, the assignment is usually done by empirical trial-a...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7578012/ https://www.ncbi.nlm.nih.gov/pubmed/33087748 http://dx.doi.org/10.1038/s41598-020-74872-6 |
Sumario: | Vibrational assignment, which establishes the correspondence between vibrational modes and spectral frequencies, is a key step in any spectroscopic study. Due to the lack of experimental technique to directly observe the thermal vibration of atoms, the assignment is usually done by empirical trial-and-error method with considerable uncertainty. Here we demonstrate a successful study of intrinsic molecular vibration property based on first-principles molecular dynamics trajectory. A unified approach for calculating and assigning vibrational frequencies is developed and applied to solve some historical issues of benzene vibration. As a major achievement, the experimental frequencies of benzene a(2g) and b(2u) vibrations are reassigned, which breaks a deadlock in contemporary spectroscopic science and removes a cloud over the application of density-functional theory in organic chemistry. This work paves the way for the comprehensive realization of the first-principles spectroscopic research, and provides crucial clues to solve the century-old problems of Kekule resonance, π-deformation, and aromaticity. |
---|