Cargando…
Refining dataset curation methods for deep learning-based automated tuberculosis screening
BACKGROUND: The study objective was to determine whether unlabeled datasets can be used to further train and improve the accuracy of a deep learning system (DLS) for the detection of tuberculosis (TB) on chest radiographs (CXRs) using a two-stage semi-supervised approach. METHODS: A total of 111,622...
Autores principales: | Kim, Tae Kyung, Yi, Paul H., Hager, Gregory D., Lin, Cheng Ting |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7578485/ https://www.ncbi.nlm.nih.gov/pubmed/33145084 http://dx.doi.org/10.21037/jtd.2019.08.34 |
Ejemplares similares
-
Utility and efficacy of advanced imaging in thoracic disorders
por: Chaudhry, Ammar
Publicado: (2020) -
Biomarkers in immunotherapy: literature review and future directions
por: Pharaon, Rebecca, et al.
Publicado: (2020) -
Role of precision imaging in esophageal cancer
por: Elsherif, Sherif B., et al.
Publicado: (2020) -
Role of cardiac nuclear stress perfusion exam after computed tomographic coronary angiogram for evaluation of obstructive coronary artery disease in patients with chest pain
por: Gul, Maryam, et al.
Publicado: (2020) -
Role of immunotherapy and co-mutations on KRAS-mutant non-small cell lung cancer survival
por: Amanam, Idoroenyi, et al.
Publicado: (2020)