Cargando…
Estimating the power to detect a change caused by a vaccine from time series data
When evaluating the effects of vaccination programs, it is common to estimate changes in rates of disease before and after vaccine introduction. There are a number of related approaches that attempt to adjust for trends unrelated to the vaccine and to detect changes that coincide with introduction....
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
F1000 Research Limited
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7578561/ https://www.ncbi.nlm.nih.gov/pubmed/33117962 http://dx.doi.org/10.12688/gatesopenres.13116.2 |
_version_ | 1783598393241632768 |
---|---|
author | Weinberger, Daniel M. Warren, Joshua L. |
author_facet | Weinberger, Daniel M. Warren, Joshua L. |
author_sort | Weinberger, Daniel M. |
collection | PubMed |
description | When evaluating the effects of vaccination programs, it is common to estimate changes in rates of disease before and after vaccine introduction. There are a number of related approaches that attempt to adjust for trends unrelated to the vaccine and to detect changes that coincide with introduction. However, characteristics of the data can influence the ability to estimate such a change. These include, but are not limited to, the number of years of available data prior to vaccine introduction, the expected strength of the effect of the intervention, the strength of underlying secular trends, and the amount of unexplained variability in the data. Sources of unexplained variability include model misspecification, epidemics due to unidentified pathogens, and changes in ascertainment or coding practice among others. In this study, we present a simple simulation framework for estimating the power to detect a decline and the precision of these estimates. We use real-world data from a pre-vaccine period to generate simulated time series where the vaccine effect is specified a priori. We present an interactive web-based tool to implement this approach. We also demonstrate the use of this approach using observed data on pneumonia hospitalization from the states in Brazil from a period prior to introduction of pneumococcal vaccines to generate the simulated time series. We relate the power of the hypothesis tests to the number of cases per year and the amount of unexplained variability in the data and demonstrate how fewer years of data influence the results. |
format | Online Article Text |
id | pubmed-7578561 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | F1000 Research Limited |
record_format | MEDLINE/PubMed |
spelling | pubmed-75785612020-10-27 Estimating the power to detect a change caused by a vaccine from time series data Weinberger, Daniel M. Warren, Joshua L. Gates Open Res Research Article When evaluating the effects of vaccination programs, it is common to estimate changes in rates of disease before and after vaccine introduction. There are a number of related approaches that attempt to adjust for trends unrelated to the vaccine and to detect changes that coincide with introduction. However, characteristics of the data can influence the ability to estimate such a change. These include, but are not limited to, the number of years of available data prior to vaccine introduction, the expected strength of the effect of the intervention, the strength of underlying secular trends, and the amount of unexplained variability in the data. Sources of unexplained variability include model misspecification, epidemics due to unidentified pathogens, and changes in ascertainment or coding practice among others. In this study, we present a simple simulation framework for estimating the power to detect a decline and the precision of these estimates. We use real-world data from a pre-vaccine period to generate simulated time series where the vaccine effect is specified a priori. We present an interactive web-based tool to implement this approach. We also demonstrate the use of this approach using observed data on pneumonia hospitalization from the states in Brazil from a period prior to introduction of pneumococcal vaccines to generate the simulated time series. We relate the power of the hypothesis tests to the number of cases per year and the amount of unexplained variability in the data and demonstrate how fewer years of data influence the results. F1000 Research Limited 2020-10-19 /pmc/articles/PMC7578561/ /pubmed/33117962 http://dx.doi.org/10.12688/gatesopenres.13116.2 Text en Copyright: © 2020 Weinberger DM and Warren JL http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Weinberger, Daniel M. Warren, Joshua L. Estimating the power to detect a change caused by a vaccine from time series data |
title | Estimating the power to detect a change caused by a vaccine from time series data |
title_full | Estimating the power to detect a change caused by a vaccine from time series data |
title_fullStr | Estimating the power to detect a change caused by a vaccine from time series data |
title_full_unstemmed | Estimating the power to detect a change caused by a vaccine from time series data |
title_short | Estimating the power to detect a change caused by a vaccine from time series data |
title_sort | estimating the power to detect a change caused by a vaccine from time series data |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7578561/ https://www.ncbi.nlm.nih.gov/pubmed/33117962 http://dx.doi.org/10.12688/gatesopenres.13116.2 |
work_keys_str_mv | AT weinbergerdanielm estimatingthepowertodetectachangecausedbyavaccinefromtimeseriesdata AT warrenjoshual estimatingthepowertodetectachangecausedbyavaccinefromtimeseriesdata |