Cargando…

Modeling equations and dataset of model parameters for ultrafiltration membrane fabrication

In the related research article, entitled “A generic process modeling ‒ LCA approach for UF membrane fabrication: Application to cellulose acetate membranes” [1], a generic model is described and used to obtain the list of material and energy flows as a function of operating conditions for ultrafilt...

Descripción completa

Detalles Bibliográficos
Autores principales: Prézélus, Flavie, Tiruta-Barna, Ligia, Guigui, Christelle, Remigy, Jean-Christophe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7578693/
https://www.ncbi.nlm.nih.gov/pubmed/33102648
http://dx.doi.org/10.1016/j.dib.2020.106363
Descripción
Sumario:In the related research article, entitled “A generic process modeling ‒ LCA approach for UF membrane fabrication: Application to cellulose acetate membranes” [1], a generic model is described and used to obtain the list of material and energy flows as a function of operating conditions for ultrafiltration (UF) hollow fibers preparation by non-solvent induced phase separation. In this data article, equations of the model, a dataset of model parameters and modelled data are detailed. modeling equations are developed from material and energy balances for each unit operation (i.e. from polymer solution mixing to module conditioning) based on an industrial membrane fabrication process of UF cellulose acetate modules. These equations may be reused as such or adapted to other membrane materials and industrial practices. The dataset of model parameters relates to industrial on-site measurements and scientific literature for the existing cellulose-based module. The modelled data corresponds to a reference situation for which hollow fibers (inner and outer diameters equal to 0.93 mm and 1.67 mm, respectively) are fabricated from a polymer solution composition of 20 wt.% of cellulose triacetate, 78 wt.% N-methyl-2-pyrrolidone and 2 wt.% lithium chloride.