Cargando…
In-situ microwave-assisted catalytic upgrading of heavy oil: Experimental validation and effect of catalyst pore structure on activity
In-situ combustion alone may not provide sufficient heating for downhole, catalytic upgrading of heavy oil in the Toe-to-Heel Air Injection (THAI) process. In this study, a new microwave heating technique has been proposed as a strategy to provide the requisite heating. Microwave technology is alone...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Published by Elsevier B.V.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7578747/ https://www.ncbi.nlm.nih.gov/pubmed/33106747 http://dx.doi.org/10.1016/j.cej.2020.127420 |
Sumario: | In-situ combustion alone may not provide sufficient heating for downhole, catalytic upgrading of heavy oil in the Toe-to-Heel Air Injection (THAI) process. In this study, a new microwave heating technique has been proposed as a strategy to provide the requisite heating. Microwave technology is alone able to provide rapid heating which can be targeted at the catalyst packing and/or the incoming oil in its immediate vicinity. It was demonstrated, contrary to previous assertions, that heavy oil can be heated directly with microwaves to 425 °C, which is the temperature needed for successful catalytic upgrading, without the need for an additional microwave susceptor. Upgrading of >3.2° API points, a reduction in viscosity to less than 100 cP, and >12% reduction in sulfur content was achieved using commercially available hydrodesulfurization (HDS) catalyst. The HDS catalyst induced dehydrogenation, with nearly 20% hydrogen detected in the gas product. Hence, in THAI field settings, part of the oil-in-place could be sacrificed for dehydrogenation, with the produced hydrogen directed to aid hydrodesulfurization and improve upgrading. Further, this could provide a route for downhole hydrogen production, which can contribute to the efforts towards the hydrogen economy. A single, unified model of evolving catalyst structure was developed. The model incorporated the unusual gas sorption data, computerized x-ray tomography and electron microprobe characterization, as well as the reaction behavior. The proposed model also highlighted the significant impact of the particular catalyst fabrication process on the catalytic activity. |
---|