Cargando…
Impact of RNA-seq data analysis algorithms on gene expression estimation and downstream prediction
To use next-generation sequencing technology such as RNA-seq for medical and health applications, choosing proper analysis methods for biomarker identification remains a critical challenge for most users. The US Food and Drug Administration (FDA) has led the Sequencing Quality Control (SEQC) project...
Autores principales: | Tong, Li, Wu, Po-Yen, Phan, John H., Hassazadeh, Hamid R., Tong, Weida, Wang, May D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7578822/ https://www.ncbi.nlm.nih.gov/pubmed/33087762 http://dx.doi.org/10.1038/s41598-020-74567-y |
Ejemplares similares
-
Assessing the impact of human genome annotation choice on RNA-seq expression estimates
por: Wu, Po-Yen, et al.
Publicado: (2013) -
Dissecting the Characteristics and Dynamics of Human Protein Complexes at Transcriptome Cascade Using RNA-Seq Data
por: Chen, Geng, et al.
Publicado: (2013) -
Dynamics in Transcriptomics: Advancements in RNA-seq Time Course and Downstream Analysis
por: Spies, Daniel, et al.
Publicado: (2015) -
Estimation of data-specific constitutive exons with RNA-Seq data
por: Patrick, Ellis, et al.
Publicado: (2013) -
Comprehensive Assessments of RNA-seq by the SEQC Consortium: FDA-Led Efforts Advance Precision Medicine
por: Xu, Joshua, et al.
Publicado: (2016)