Cargando…

Representing Quantum Information with Digital Coding Metasurfaces

With the development of science and technology, the way to represent information becomes more powerful and diversified. Recent research on digital coding metasurfaces has built an alternative bridge between wave‐behaviors and information science. Different from the logic information in traditional c...

Descripción completa

Detalles Bibliográficos
Autores principales: Bai, Guo Dong, Cui, Tie Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7578880/
https://www.ncbi.nlm.nih.gov/pubmed/33101865
http://dx.doi.org/10.1002/advs.202001648
Descripción
Sumario:With the development of science and technology, the way to represent information becomes more powerful and diversified. Recent research on digital coding metasurfaces has built an alternative bridge between wave‐behaviors and information science. Different from the logic information in traditional circuits, the digital bit in coding metasurfaces is based on wave‐structure interaction, which is capable of exploiting multiple degrees of freedom (DoFs). However, to what extent the digital coding metasurface can expand the information representation has not been discussed. In this work, it is shown that classical metasurfaces have the ability to mimic qubit and quantum information. An approach for simulating a two‐level spin system with meta‐atoms is proposed, from which the superposition for two optical spin states is constructed. It is further proposed that using geometric‐phase elements with nonseparable coding states can induce the classical entanglement between polarization and spatial modes, and give the condition to achieve the maximal entanglement. This study expands the information representing range of coding metasurfaces and provides an ultrathin platform to mimic quantum information.