Cargando…

Nanoemulsion‐Loaded Capsules for Controlled Delivery of Lipophilic Active Ingredients

Nanoemulsions have become ideal candidates for loading hydrophobic active ingredients and enhancing their bioavailability in the pharmaceutical, food, and cosmetic industries. However, the lack of versatile carrier platforms for nanoemulsions hinders advanced control over their release behavior. In...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Liang‐Hsun, Cheng, Li‐Chiun, Doyle, Patrick S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7578884/
https://www.ncbi.nlm.nih.gov/pubmed/33101868
http://dx.doi.org/10.1002/advs.202001677
Descripción
Sumario:Nanoemulsions have become ideal candidates for loading hydrophobic active ingredients and enhancing their bioavailability in the pharmaceutical, food, and cosmetic industries. However, the lack of versatile carrier platforms for nanoemulsions hinders advanced control over their release behavior. In this work, a method is developed to encapsulate nanoemulsions in alginate capsules for the controlled delivery of lipophilic active ingredients. Functional nanoemulsions loaded with active ingredients and calcium ions are first prepared, followed by encapsulation inside alginate shells. The intrinsically high viscosity of the nanoemulsions ensures the formation of spherical capsules and high encapsulation efficiency during the synthesis. Moreover, a facile approach is developed to measure the nanoemulsion release profile from capsules through UV–vis measurement without an additional extraction step. A quantitative analysis of the release profiles shows that the capsule systems possess a tunable, delayed‐burst release. The encapsulation methodology is generalized to other active ingredients, oil phases, nanodroplet sizes, and chemically crosslinked inner hydrogel cores. Overall, the capsule systems provide promising platforms for various functional nanoemulsion formulations.