Cargando…
A High Throughput and Unbiased Machine Learning Approach for Classification of Graphene Dispersions
Significant research to define and standardize terminologies for describing stacks of atomic layers in bulk graphene materials has been undertaken. Most methods to measure the stacking characteristics are time consuming and are not suited for obtaining information by directly imaging dispersions. Co...
Autores principales: | Abedin, Md. Joynul, Barua, Titon, Shaibani, Mahdokht, Majumder, Mainak |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7578897/ https://www.ncbi.nlm.nih.gov/pubmed/33101862 http://dx.doi.org/10.1002/advs.202001600 |
Ejemplares similares
-
Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide
por: Akbari, Abozar, et al.
Publicado: (2016) -
Short-term stressors and corticosterone effects on immunity in male toads (Rhinella icterica): A neuroimmune-endocrine approach
por: Titon, Stefanny Christie Monteiro, et al.
Publicado: (2021) -
Unbiased Plasmonic-Assisted Integrated Graphene Photodetectors
por: Vangelidis, Ioannis, et al.
Publicado: (2022) -
Attenuation, dispersion and nonlinearity effects in graphene-based waveguides
por: Lima, Almir Wirth, et al.
Publicado: (2015) -
A Racially Unbiased, Machine Learning Approach to Prediction of Mortality: Algorithm Development Study
por: Allen, Angier, et al.
Publicado: (2020)