Cargando…

Impact Toughness Anisotropy of TA31 Titanium Alloy Cylindrical Shell after Ring Rolling

The impact toughness of a TA31 titanium alloy cylindrical shell was investigated systemically after ring rolling. The impact toughness of specimens with different notch orientations shows obvious anisotropy. The microstructure of the cylindrical shell and the impact fracture were characterized by an...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Haiyang, Zhang, Jianyang, Xie, Bijun, He, Zhangxun, Zhang, Hao, Wang, Bing, Xu, Bin, Wu, Yuxi, Sun, Mingyue
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7579025/
https://www.ncbi.nlm.nih.gov/pubmed/33003403
http://dx.doi.org/10.3390/ma13194332
Descripción
Sumario:The impact toughness of a TA31 titanium alloy cylindrical shell was investigated systemically after ring rolling. The impact toughness of specimens with different notch orientations shows obvious anisotropy. The microstructure of the cylindrical shell and the impact fracture were characterized by an optical microscope and scanning electron microscope. The results show that cracks are easier to propagate in the equiaxed α phase than the elongated α phase. This is because the expanding cracking path in the equiaxed α phase is shorter than that in the elongated α phase, and thereby the cracks are easier to propagate in the equiaxed α phase than the elongated α phase. More specifically, the α phase on the RD-TD plane was obviously isotropic, which makes it easy for the cracks to propagate along α grains in the same direction. However, the α phase on the RD-ND plane has a layered characteristic, and the direction of the α phase varies from layer to layer, thus it requires higher energy for cracks to propagate across this layered α phase. Therefore, the cracks propagating in the same α phase orientation take easier than that in the layered α phase, so it has lower impact toughness.