Cargando…
Mixture Optimization of Recycled Aggregate Concrete Using Hybrid Machine Learning Model
Recycled aggregate concrete (RAC) contributes to mitigating the depletion of natural aggregates, alleviating the carbon footprint of concrete construction, and averting the landfilling of colossal amounts of construction and demolition waste. However, complexities in the mixture optimization of RAC...
Autores principales: | Nunez, Itzel, Marani, Afshin, Nehdi, Moncef L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7579239/ https://www.ncbi.nlm.nih.gov/pubmed/33003383 http://dx.doi.org/10.3390/ma13194331 |
Ejemplares similares
-
Predicting Ultra-High-Performance Concrete Compressive Strength Using Tabular Generative Adversarial Networks
por: Marani, Afshin, et al.
Publicado: (2020) -
Machine Learning Prediction Models to Evaluate the Strength of Recycled Aggregate Concrete
por: Yuan, Xiongzhou, et al.
Publicado: (2022) -
Modeling Self-Healing of Concrete Using Hybrid Genetic Algorithm–Artificial Neural Network
por: Ramadan Suleiman, Ahmed, et al.
Publicado: (2017) -
Machine Learning-Based Evaluation of Shear Capacity of Recycled Aggregate Concrete Beams
por: Yu, Yong, et al.
Publicado: (2020) -
Comparison of Prediction Models Based on Machine Learning for the Compressive Strength Estimation of Recycled Aggregate Concrete
por: Khan, Kaffayatullah, et al.
Publicado: (2022)