Cargando…
A Methodology for the Statistical Calibration of Complex Constitutive Material Models: Application to Temperature-Dependent Elasto-Visco-Plastic Materials
The calibration of any sophisticated model, and in particular a constitutive relation, is a complex problem that has a direct impact in the cost of generating experimental data and the accuracy of its prediction capacity. In this work, we address this common situation using a two-stage procedure. In...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7579257/ https://www.ncbi.nlm.nih.gov/pubmed/33023178 http://dx.doi.org/10.3390/ma13194402 |
_version_ | 1783598548166639616 |
---|---|
author | de Pablos, Juan Luis Menga, Edoardo Romero, Ignacio |
author_facet | de Pablos, Juan Luis Menga, Edoardo Romero, Ignacio |
author_sort | de Pablos, Juan Luis |
collection | PubMed |
description | The calibration of any sophisticated model, and in particular a constitutive relation, is a complex problem that has a direct impact in the cost of generating experimental data and the accuracy of its prediction capacity. In this work, we address this common situation using a two-stage procedure. In order to evaluate the sensitivity of the model to its parameters, the first step in our approach consists of formulating a meta-model and employing it to identify the most relevant parameters. In the second step, a Bayesian calibration is performed on the most influential parameters of the model in order to obtain an optimal mean value and its associated uncertainty. We claim that this strategy is very efficient for a wide range of applications and can guide the design of experiments, thus reducing test campaigns and computational costs. Moreover, the use of Gaussian processes together with Bayesian calibration effectively combines the information coming from experiments and numerical simulations. The framework described is applied to the calibration of three widely employed material constitutive relations for metals under high strain rates and temperatures, namely, the Johnson–Cook, Zerilli–Armstrong, and Arrhenius models. |
format | Online Article Text |
id | pubmed-7579257 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75792572020-10-29 A Methodology for the Statistical Calibration of Complex Constitutive Material Models: Application to Temperature-Dependent Elasto-Visco-Plastic Materials de Pablos, Juan Luis Menga, Edoardo Romero, Ignacio Materials (Basel) Article The calibration of any sophisticated model, and in particular a constitutive relation, is a complex problem that has a direct impact in the cost of generating experimental data and the accuracy of its prediction capacity. In this work, we address this common situation using a two-stage procedure. In order to evaluate the sensitivity of the model to its parameters, the first step in our approach consists of formulating a meta-model and employing it to identify the most relevant parameters. In the second step, a Bayesian calibration is performed on the most influential parameters of the model in order to obtain an optimal mean value and its associated uncertainty. We claim that this strategy is very efficient for a wide range of applications and can guide the design of experiments, thus reducing test campaigns and computational costs. Moreover, the use of Gaussian processes together with Bayesian calibration effectively combines the information coming from experiments and numerical simulations. The framework described is applied to the calibration of three widely employed material constitutive relations for metals under high strain rates and temperatures, namely, the Johnson–Cook, Zerilli–Armstrong, and Arrhenius models. MDPI 2020-10-02 /pmc/articles/PMC7579257/ /pubmed/33023178 http://dx.doi.org/10.3390/ma13194402 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article de Pablos, Juan Luis Menga, Edoardo Romero, Ignacio A Methodology for the Statistical Calibration of Complex Constitutive Material Models: Application to Temperature-Dependent Elasto-Visco-Plastic Materials |
title | A Methodology for the Statistical Calibration of Complex Constitutive Material Models: Application to Temperature-Dependent Elasto-Visco-Plastic Materials |
title_full | A Methodology for the Statistical Calibration of Complex Constitutive Material Models: Application to Temperature-Dependent Elasto-Visco-Plastic Materials |
title_fullStr | A Methodology for the Statistical Calibration of Complex Constitutive Material Models: Application to Temperature-Dependent Elasto-Visco-Plastic Materials |
title_full_unstemmed | A Methodology for the Statistical Calibration of Complex Constitutive Material Models: Application to Temperature-Dependent Elasto-Visco-Plastic Materials |
title_short | A Methodology for the Statistical Calibration of Complex Constitutive Material Models: Application to Temperature-Dependent Elasto-Visco-Plastic Materials |
title_sort | methodology for the statistical calibration of complex constitutive material models: application to temperature-dependent elasto-visco-plastic materials |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7579257/ https://www.ncbi.nlm.nih.gov/pubmed/33023178 http://dx.doi.org/10.3390/ma13194402 |
work_keys_str_mv | AT depablosjuanluis amethodologyforthestatisticalcalibrationofcomplexconstitutivematerialmodelsapplicationtotemperaturedependentelastoviscoplasticmaterials AT mengaedoardo amethodologyforthestatisticalcalibrationofcomplexconstitutivematerialmodelsapplicationtotemperaturedependentelastoviscoplasticmaterials AT romeroignacio amethodologyforthestatisticalcalibrationofcomplexconstitutivematerialmodelsapplicationtotemperaturedependentelastoviscoplasticmaterials AT depablosjuanluis methodologyforthestatisticalcalibrationofcomplexconstitutivematerialmodelsapplicationtotemperaturedependentelastoviscoplasticmaterials AT mengaedoardo methodologyforthestatisticalcalibrationofcomplexconstitutivematerialmodelsapplicationtotemperaturedependentelastoviscoplasticmaterials AT romeroignacio methodologyforthestatisticalcalibrationofcomplexconstitutivematerialmodelsapplicationtotemperaturedependentelastoviscoplasticmaterials |