Cargando…
Nanoparticles Synthesis in Wet-Operating Stirred Media: Investigation on the Grinding Efficiency
The use of nanomaterials, thanks to their peculiar properties and versatility, is becoming central in an increasing number of scientific and engineering applications. At the same time, the growing concern towards environmental issues drives the seeking of alternative strategies for a safer and more...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7579271/ https://www.ncbi.nlm.nih.gov/pubmed/32992821 http://dx.doi.org/10.3390/ma13194281 |
_version_ | 1783598551388913664 |
---|---|
author | Trofa, Marco D’Avino, Gaetano Fabiano, Bruno Vocciante, Marco |
author_facet | Trofa, Marco D’Avino, Gaetano Fabiano, Bruno Vocciante, Marco |
author_sort | Trofa, Marco |
collection | PubMed |
description | The use of nanomaterials, thanks to their peculiar properties and versatility, is becoming central in an increasing number of scientific and engineering applications. At the same time, the growing concern towards environmental issues drives the seeking of alternative strategies for a safer and more sustainable production of nanoparticles. Here we focus on a low-energy, magnetically-driven wet milling technique for the synthesis of metal nanoparticles starting from a bulky solid. The proposed approach is simple, economical, sustainable, and provides numerous advantages, including the minimization of the nanoparticles air dispersion and a greater control over the final product. This process is investigated by experiments and discrete element method simulations to reproduce the movement of the grinding beads and study the collision dynamics. The effect of several parameters is analyzed, including the stirring bar velocity, its inclination, and the grinding bead size, to quantify the actual frequency, energy, and angle of collisions. Experiments reveal a non-monotonous effect of the stirring velocity on the abrasion efficiency, whereas numerical simulations highlight the prevalent tangential nature of collisions, which is only weakly affected by the stirring velocity. On the other hand, the stirring velocity affects the collision frequency and relative kinetic energy, suggesting the existence of an optimal parameters combination. Although a small variation of the stirring bar length does not significantly affect the collision dynamics, the use of grinding beads of different dimensions offers several tuning opportunities. |
format | Online Article Text |
id | pubmed-7579271 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75792712020-10-29 Nanoparticles Synthesis in Wet-Operating Stirred Media: Investigation on the Grinding Efficiency Trofa, Marco D’Avino, Gaetano Fabiano, Bruno Vocciante, Marco Materials (Basel) Article The use of nanomaterials, thanks to their peculiar properties and versatility, is becoming central in an increasing number of scientific and engineering applications. At the same time, the growing concern towards environmental issues drives the seeking of alternative strategies for a safer and more sustainable production of nanoparticles. Here we focus on a low-energy, magnetically-driven wet milling technique for the synthesis of metal nanoparticles starting from a bulky solid. The proposed approach is simple, economical, sustainable, and provides numerous advantages, including the minimization of the nanoparticles air dispersion and a greater control over the final product. This process is investigated by experiments and discrete element method simulations to reproduce the movement of the grinding beads and study the collision dynamics. The effect of several parameters is analyzed, including the stirring bar velocity, its inclination, and the grinding bead size, to quantify the actual frequency, energy, and angle of collisions. Experiments reveal a non-monotonous effect of the stirring velocity on the abrasion efficiency, whereas numerical simulations highlight the prevalent tangential nature of collisions, which is only weakly affected by the stirring velocity. On the other hand, the stirring velocity affects the collision frequency and relative kinetic energy, suggesting the existence of an optimal parameters combination. Although a small variation of the stirring bar length does not significantly affect the collision dynamics, the use of grinding beads of different dimensions offers several tuning opportunities. MDPI 2020-09-25 /pmc/articles/PMC7579271/ /pubmed/32992821 http://dx.doi.org/10.3390/ma13194281 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Trofa, Marco D’Avino, Gaetano Fabiano, Bruno Vocciante, Marco Nanoparticles Synthesis in Wet-Operating Stirred Media: Investigation on the Grinding Efficiency |
title | Nanoparticles Synthesis in Wet-Operating Stirred Media: Investigation on the Grinding Efficiency |
title_full | Nanoparticles Synthesis in Wet-Operating Stirred Media: Investigation on the Grinding Efficiency |
title_fullStr | Nanoparticles Synthesis in Wet-Operating Stirred Media: Investigation on the Grinding Efficiency |
title_full_unstemmed | Nanoparticles Synthesis in Wet-Operating Stirred Media: Investigation on the Grinding Efficiency |
title_short | Nanoparticles Synthesis in Wet-Operating Stirred Media: Investigation on the Grinding Efficiency |
title_sort | nanoparticles synthesis in wet-operating stirred media: investigation on the grinding efficiency |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7579271/ https://www.ncbi.nlm.nih.gov/pubmed/32992821 http://dx.doi.org/10.3390/ma13194281 |
work_keys_str_mv | AT trofamarco nanoparticlessynthesisinwetoperatingstirredmediainvestigationonthegrindingefficiency AT davinogaetano nanoparticlessynthesisinwetoperatingstirredmediainvestigationonthegrindingefficiency AT fabianobruno nanoparticlessynthesisinwetoperatingstirredmediainvestigationonthegrindingefficiency AT vocciantemarco nanoparticlessynthesisinwetoperatingstirredmediainvestigationonthegrindingefficiency |