Cargando…
Kriging-Based Land-Use Regression Models That Use Machine Learning Algorithms to Estimate the Monthly BTEX Concentration
This paper uses machine learning to refine a Land-use Regression (LUR) model and to estimate the spatial–temporal variation in BTEX concentrations in Kaohsiung, Taiwan. Using the Taiwanese Environmental Protection Agency (EPA) data of BTEX (benzene, toluene, ethylbenzene, and xylenes) concentrations...
Autores principales: | Hsu, Chin-Yu, Zeng, Yu-Ting, Chen, Yu-Cheng, Chen, Mu-Jean, Lung, Shih-Chun Candice, Wu, Chih-Da |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7579284/ https://www.ncbi.nlm.nih.gov/pubmed/32977562 http://dx.doi.org/10.3390/ijerph17196956 |
Ejemplares similares
-
Asian Culturally Specific Predictors in a Large-Scale Land Use Regression Model to Predict Spatial-Temporal Variability of Ozone Concentration
por: Hsu, Chin-Yu, et al.
Publicado: (2019) -
Prediction of nickel concentration in peri-urban and urban soils using hybridized empirical bayesian kriging and support vector machine regression
por: Agyeman, Prince Chapman, et al.
Publicado: (2022) -
Using the Kriging Correlation for unsupervised feature selection problems
por: Chua, Cheng-Han, et al.
Publicado: (2022) -
Spatiotemporal Modeling of Ozone Levels in Quebec (Canada): A Comparison of Kriging, Land-Use Regression (LUR), and Combined Bayesian Maximum Entropy–LUR Approaches
por: Adam-Poupart, Ariane, et al.
Publicado: (2014) -
Estimating Grassland Carbon Stocks in Hulunber China, Using Landsat8 Oli Imagery and Regression Kriging †
por: Ding, Lei, et al.
Publicado: (2019)