Cargando…
Thermal Insulation of YSZ and Erbia-Doped Yttria-Stabilised Zirconia EB-PVD Thermal Barrier Coating Systems after CMAS Attack
The impact of small deposits of calcium–magnesium–aluminium silicates (CMAS) on the top of thermal barrier coatings (TBCs) made of yttria-stabilised zirconia (YSZ) produced via electron-beam physical vapour deposition (EB-PVD) is shown to play a role in the microstructural and chemical stability of...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7579325/ https://www.ncbi.nlm.nih.gov/pubmed/33019659 http://dx.doi.org/10.3390/ma13194382 |
Sumario: | The impact of small deposits of calcium–magnesium–aluminium silicates (CMAS) on the top of thermal barrier coatings (TBCs) made of yttria-stabilised zirconia (YSZ) produced via electron-beam physical vapour deposition (EB-PVD) is shown to play a role in the microstructural and chemical stability of the coatings; hence, it also affects the thermal insulation potential of TBCs. Therefore, the present work investigates the degradation potential of minor CMAS deposits (from 0.25 to 5 mg·cm(−2)) annealed at 1250 °C for 1 h on a novel Er(2)O(3)-Y(2)O(3) co-stabilised ZrO(2) (ErYSZ) EB-PVD TBC, which is compared to the standard YSZ coating. Due to the higher reactivity of ErYSZ coatings with CMAS, its penetration is limited in comparison with the standard YSZ coatings, hence resulting in a better thermal insulation of the former after ageing. |
---|