Cargando…
Generating Input Data for Microstructure Modelling: A Deep Learning Approach Using Generative Adversarial Networks
For the generation of representative volume elements a statistical description of the relevant parameters is necessary. These parameters usually describe the geometric structure of a single grain. Commonly, parameters like area, aspect ratio, and slope of the grain axis relative to the rolling direc...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7579462/ https://www.ncbi.nlm.nih.gov/pubmed/32977556 http://dx.doi.org/10.3390/ma13194236 |
_version_ | 1783598596007919616 |
---|---|
author | Pütz, Felix Henrich, Manuel Fehlemann, Niklas Roth, Andreas Münstermann, Sebastian |
author_facet | Pütz, Felix Henrich, Manuel Fehlemann, Niklas Roth, Andreas Münstermann, Sebastian |
author_sort | Pütz, Felix |
collection | PubMed |
description | For the generation of representative volume elements a statistical description of the relevant parameters is necessary. These parameters usually describe the geometric structure of a single grain. Commonly, parameters like area, aspect ratio, and slope of the grain axis relative to the rolling direction are applied. However, usually simple distribution functions like log normal or gamma distribution are used. Yet, these do not take the interdependencies between the microstructural parameters into account. To fully describe any metallic microstructure though, these interdependencies between the singular parameters need to be accounted for. To accomplish this representation, a machine learning approach was applied in this study. By implementing a Wasserstein generative adversarial network, the distribution, as well as the interdependencies could accurately be described. A validation scheme was applied to verify the excellent match between microstructure input data and synthetically generated output data. |
format | Online Article Text |
id | pubmed-7579462 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75794622020-10-29 Generating Input Data for Microstructure Modelling: A Deep Learning Approach Using Generative Adversarial Networks Pütz, Felix Henrich, Manuel Fehlemann, Niklas Roth, Andreas Münstermann, Sebastian Materials (Basel) Article For the generation of representative volume elements a statistical description of the relevant parameters is necessary. These parameters usually describe the geometric structure of a single grain. Commonly, parameters like area, aspect ratio, and slope of the grain axis relative to the rolling direction are applied. However, usually simple distribution functions like log normal or gamma distribution are used. Yet, these do not take the interdependencies between the microstructural parameters into account. To fully describe any metallic microstructure though, these interdependencies between the singular parameters need to be accounted for. To accomplish this representation, a machine learning approach was applied in this study. By implementing a Wasserstein generative adversarial network, the distribution, as well as the interdependencies could accurately be described. A validation scheme was applied to verify the excellent match between microstructure input data and synthetically generated output data. MDPI 2020-09-23 /pmc/articles/PMC7579462/ /pubmed/32977556 http://dx.doi.org/10.3390/ma13194236 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Pütz, Felix Henrich, Manuel Fehlemann, Niklas Roth, Andreas Münstermann, Sebastian Generating Input Data for Microstructure Modelling: A Deep Learning Approach Using Generative Adversarial Networks |
title | Generating Input Data for Microstructure Modelling: A Deep Learning Approach Using Generative Adversarial Networks |
title_full | Generating Input Data for Microstructure Modelling: A Deep Learning Approach Using Generative Adversarial Networks |
title_fullStr | Generating Input Data for Microstructure Modelling: A Deep Learning Approach Using Generative Adversarial Networks |
title_full_unstemmed | Generating Input Data for Microstructure Modelling: A Deep Learning Approach Using Generative Adversarial Networks |
title_short | Generating Input Data for Microstructure Modelling: A Deep Learning Approach Using Generative Adversarial Networks |
title_sort | generating input data for microstructure modelling: a deep learning approach using generative adversarial networks |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7579462/ https://www.ncbi.nlm.nih.gov/pubmed/32977556 http://dx.doi.org/10.3390/ma13194236 |
work_keys_str_mv | AT putzfelix generatinginputdataformicrostructuremodellingadeeplearningapproachusinggenerativeadversarialnetworks AT henrichmanuel generatinginputdataformicrostructuremodellingadeeplearningapproachusinggenerativeadversarialnetworks AT fehlemannniklas generatinginputdataformicrostructuremodellingadeeplearningapproachusinggenerativeadversarialnetworks AT rothandreas generatinginputdataformicrostructuremodellingadeeplearningapproachusinggenerativeadversarialnetworks AT munstermannsebastian generatinginputdataformicrostructuremodellingadeeplearningapproachusinggenerativeadversarialnetworks |