Cargando…

Generating Input Data for Microstructure Modelling: A Deep Learning Approach Using Generative Adversarial Networks

For the generation of representative volume elements a statistical description of the relevant parameters is necessary. These parameters usually describe the geometric structure of a single grain. Commonly, parameters like area, aspect ratio, and slope of the grain axis relative to the rolling direc...

Descripción completa

Detalles Bibliográficos
Autores principales: Pütz, Felix, Henrich, Manuel, Fehlemann, Niklas, Roth, Andreas, Münstermann, Sebastian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7579462/
https://www.ncbi.nlm.nih.gov/pubmed/32977556
http://dx.doi.org/10.3390/ma13194236
_version_ 1783598596007919616
author Pütz, Felix
Henrich, Manuel
Fehlemann, Niklas
Roth, Andreas
Münstermann, Sebastian
author_facet Pütz, Felix
Henrich, Manuel
Fehlemann, Niklas
Roth, Andreas
Münstermann, Sebastian
author_sort Pütz, Felix
collection PubMed
description For the generation of representative volume elements a statistical description of the relevant parameters is necessary. These parameters usually describe the geometric structure of a single grain. Commonly, parameters like area, aspect ratio, and slope of the grain axis relative to the rolling direction are applied. However, usually simple distribution functions like log normal or gamma distribution are used. Yet, these do not take the interdependencies between the microstructural parameters into account. To fully describe any metallic microstructure though, these interdependencies between the singular parameters need to be accounted for. To accomplish this representation, a machine learning approach was applied in this study. By implementing a Wasserstein generative adversarial network, the distribution, as well as the interdependencies could accurately be described. A validation scheme was applied to verify the excellent match between microstructure input data and synthetically generated output data.
format Online
Article
Text
id pubmed-7579462
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-75794622020-10-29 Generating Input Data for Microstructure Modelling: A Deep Learning Approach Using Generative Adversarial Networks Pütz, Felix Henrich, Manuel Fehlemann, Niklas Roth, Andreas Münstermann, Sebastian Materials (Basel) Article For the generation of representative volume elements a statistical description of the relevant parameters is necessary. These parameters usually describe the geometric structure of a single grain. Commonly, parameters like area, aspect ratio, and slope of the grain axis relative to the rolling direction are applied. However, usually simple distribution functions like log normal or gamma distribution are used. Yet, these do not take the interdependencies between the microstructural parameters into account. To fully describe any metallic microstructure though, these interdependencies between the singular parameters need to be accounted for. To accomplish this representation, a machine learning approach was applied in this study. By implementing a Wasserstein generative adversarial network, the distribution, as well as the interdependencies could accurately be described. A validation scheme was applied to verify the excellent match between microstructure input data and synthetically generated output data. MDPI 2020-09-23 /pmc/articles/PMC7579462/ /pubmed/32977556 http://dx.doi.org/10.3390/ma13194236 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Pütz, Felix
Henrich, Manuel
Fehlemann, Niklas
Roth, Andreas
Münstermann, Sebastian
Generating Input Data for Microstructure Modelling: A Deep Learning Approach Using Generative Adversarial Networks
title Generating Input Data for Microstructure Modelling: A Deep Learning Approach Using Generative Adversarial Networks
title_full Generating Input Data for Microstructure Modelling: A Deep Learning Approach Using Generative Adversarial Networks
title_fullStr Generating Input Data for Microstructure Modelling: A Deep Learning Approach Using Generative Adversarial Networks
title_full_unstemmed Generating Input Data for Microstructure Modelling: A Deep Learning Approach Using Generative Adversarial Networks
title_short Generating Input Data for Microstructure Modelling: A Deep Learning Approach Using Generative Adversarial Networks
title_sort generating input data for microstructure modelling: a deep learning approach using generative adversarial networks
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7579462/
https://www.ncbi.nlm.nih.gov/pubmed/32977556
http://dx.doi.org/10.3390/ma13194236
work_keys_str_mv AT putzfelix generatinginputdataformicrostructuremodellingadeeplearningapproachusinggenerativeadversarialnetworks
AT henrichmanuel generatinginputdataformicrostructuremodellingadeeplearningapproachusinggenerativeadversarialnetworks
AT fehlemannniklas generatinginputdataformicrostructuremodellingadeeplearningapproachusinggenerativeadversarialnetworks
AT rothandreas generatinginputdataformicrostructuremodellingadeeplearningapproachusinggenerativeadversarialnetworks
AT munstermannsebastian generatinginputdataformicrostructuremodellingadeeplearningapproachusinggenerativeadversarialnetworks