Cargando…
Generating Input Data for Microstructure Modelling: A Deep Learning Approach Using Generative Adversarial Networks
For the generation of representative volume elements a statistical description of the relevant parameters is necessary. These parameters usually describe the geometric structure of a single grain. Commonly, parameters like area, aspect ratio, and slope of the grain axis relative to the rolling direc...
Autores principales: | Pütz, Felix, Henrich, Manuel, Fehlemann, Niklas, Roth, Andreas, Münstermann, Sebastian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7579462/ https://www.ncbi.nlm.nih.gov/pubmed/32977556 http://dx.doi.org/10.3390/ma13194236 |
Ejemplares similares
-
DRAGen – A deep learning supported RVE generator framework for complex microstructure models
por: Henrich, Manuel, et al.
Publicado: (2023) -
A Novel Approach to Discrete Representative Volume Element Automation and Generation-DRAGen
por: Henrich, Manuel, et al.
Publicado: (2020) -
Synthesizing controlled microstructures of porous media using generative adversarial networks and reinforcement learning
por: Nguyen, Phong C. H., et al.
Publicado: (2022) -
Retinal image synthesis from multiple-landmarks input with generative adversarial networks
por: Yu, Zekuan, et al.
Publicado: (2019) -
Adversarial Patch Attacks on Deep-Learning-Based Face Recognition Systems Using Generative Adversarial Networks
por: Hwang, Ren-Hung, et al.
Publicado: (2023)