Cargando…
Study on Strengthening Mechanism of 9Cr-1.5Mo-1Co and 9Cr-3W-3Co Heat Resistant Steels
The strengthening mechanism of 9Cr–1.5Mo–1Co and 9Cr–3W–3Co heat resistant steel was studied by tensile test and microstructure analysis. At the same temperature, the yield strength of 9Cr–3W–3Co heat-resistant steel is higher than that of 9Cr–1.5Mo–1Co heat-resistant steel. Microstructure analysis...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7579476/ https://www.ncbi.nlm.nih.gov/pubmed/33003606 http://dx.doi.org/10.3390/ma13194340 |
Sumario: | The strengthening mechanism of 9Cr–1.5Mo–1Co and 9Cr–3W–3Co heat resistant steel was studied by tensile test and microstructure analysis. At the same temperature, the yield strength of 9Cr–3W–3Co heat-resistant steel is higher than that of 9Cr–1.5Mo–1Co heat-resistant steel. Microstructure analysis proved that the strength of 9Cr–1.5Mo–1Co and 9Cr–3W–3Co heat-resistant steel is affected by grain boundary, dislocation, precipitation, and solid solution atoms. The excellent high temperature mechanical properties of 9Cr–3W–3Co heat-resistant steel are mainly due to the solution strengthening caused by Co and W atoms and the high-density dislocations distributed in the matrix; however, 9Cr–1.5Mo–1Co heat-resistant steel is mainly due to the martensitic lath and precipitation strengthening. |
---|