Cargando…

Ultraviolet Lithography-Based Ceramic Manufacturing (UV-LCM) of the Aluminum Nitride (AlN)-Based Photocurable Dispersions

In this work, three-dimensional (3D) shaping of aluminum nitride (AlN) UV-curable dispersions using CeraFab 7500 device equipped with the light engine emitting 365 nm wavelength (a UV-LCM device) is presented. The purpose of this study was the shaping of AlN pieces with microchannels for the future...

Descripción completa

Detalles Bibliográficos
Autores principales: Ożóg, Paulina, Rutkowski, Paweł, Kata, Dariusz, Graule, Thomas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7579482/
https://www.ncbi.nlm.nih.gov/pubmed/32977441
http://dx.doi.org/10.3390/ma13194219
Descripción
Sumario:In this work, three-dimensional (3D) shaping of aluminum nitride (AlN) UV-curable dispersions using CeraFab 7500 device equipped with the light engine emitting 365 nm wavelength (a UV-LCM device) is presented. The purpose of this study was the shaping of AlN pieces with microchannels for the future potential use as microchannel heat exchangers. The dispersions were characterized by the means of the particle size distribution, rheological measurements, and the cure depth evaluation. In shaping via UV-LCM, we applied dispersions containing 40 vol % solid load and different types of photoinitiators and their concentrations, as well as different settings of the printing parameters. Cuboidal plates with channels and cylindrical 3D structures were fabricated, debound, and sintered. For comparing ceramics properties, reference samples were prepared via uniaxial and cold isostatic pressing, using the same powder mixture as in the dispersions, and later sintered. The thermal conductivity of the sintered specimens was calculated, based on density and thermal diffusivity measurements.