Cargando…

Effects of Temperature on the Morphology and Optical Properties of Spark Discharge Germanium Nanoparticles

We report the spark discharge synthesis of aerosol germanium nanoparticles followed by sintering in a tube furnace at different temperatures varying from 25 to 800 °C. The size, structure, chemical composition and optical properties were studied. We have demonstrated a melting mechanism of nanoparti...

Descripción completa

Detalles Bibliográficos
Autores principales: Lizunova, Anna, Mazharenko, Anastasia, Masnaviev, Bulat, Khramov, Egor, Efimov, Alexey, Ramanenka, Andrei, Shuklov, Ivan, Ivanov, Viktor
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7579566/
https://www.ncbi.nlm.nih.gov/pubmed/33028003
http://dx.doi.org/10.3390/ma13194431
Descripción
Sumario:We report the spark discharge synthesis of aerosol germanium nanoparticles followed by sintering in a tube furnace at different temperatures varying from 25 to 800 °C. The size, structure, chemical composition and optical properties were studied. We have demonstrated a melting mechanism of nanoparticles agglomerates, the growth of the mean primary particle size from 7 to 51 nm and the reduction of the size of agglomerates with a temperature increase. According to transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) data, primary nanoparticles sintered at temperatures from 25 to 475 °C basically have a structure of Ge crystals embedded in a GeOx amorphous matrix, as well as visible photoluminescence (PL) with the maximum at 550 nm. Pure germanium nanoparticles are prepared at temperatures above 625 °C and distinguished by their absence of visible PL. The shape of the experimental UV-vis-NIR extinction spectra significantly depends on the size distribution of the germanium crystals. This fact was confirmed by simulations according to Mie theory for obtained ensembles of germanium nanoparticles.