Cargando…
LIGHT aggravates sepsis‐associated acute kidney injury via TLR4‐MyD88‐NF‐κB pathway
Sepsis‐associated acute kidney injury (SA‐AKI) is a common clinical critical care syndrome. It has received increasing attention due to its high morbidity and mortality; however, its pathophysiological mechanisms remain elusive. LIGHT, the 14th member of the tumour necrosis factor (TNF) superfamily...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7579683/ https://www.ncbi.nlm.nih.gov/pubmed/32881263 http://dx.doi.org/10.1111/jcmm.15815 |
_version_ | 1783598646028140544 |
---|---|
author | Zhong, Yu Wu, Shun Yang, Yan Li, Gui‐qing Meng, Li Zheng, Quan‐you Li, You Xu, Gui‐lian Zhang, Ke‐qin Peng, Kan‐fu |
author_facet | Zhong, Yu Wu, Shun Yang, Yan Li, Gui‐qing Meng, Li Zheng, Quan‐you Li, You Xu, Gui‐lian Zhang, Ke‐qin Peng, Kan‐fu |
author_sort | Zhong, Yu |
collection | PubMed |
description | Sepsis‐associated acute kidney injury (SA‐AKI) is a common clinical critical care syndrome. It has received increasing attention due to its high morbidity and mortality; however, its pathophysiological mechanisms remain elusive. LIGHT, the 14th member of the tumour necrosis factor (TNF) superfamily and a bidirectional immunoregulatory molecule that regulates inflammation, plays a pivotal role in disease pathogenesis. In this study, mice with an intraperitoneal injection of LPS and HK‐2 cells challenged with LPS were employed as a model of SA‐AKI in vivo and in vitro, respectively. LIGHT deficiency notably attenuated kidney injury in pathological damage and renal function and markedly mitigated the inflammatory reaction by decreasing inflammatory mediator production and inflammatory cell infiltration in vivo. The TLR4‐Myd88‐NF‐κB signalling pathway in the kidney of LIGHT knockout mice was dramatically down‐regulated compared to the controls. Recombinant human LIGHT aggravated LPS‐treated HK‐2 cell injury by up‐regulating the expression of the TLR4‐Myd88‐NF‐κB signalling pathway and inflammation levels. TAK 242 (a selective TLR4 inhibitor) reduced this trend to some extent. In addition, blocking LIGHT with soluble receptor fusion proteins HVEM‐Fc or LTβR‐Fc in mice attenuated renal dysfunction and pathological damage in SA‐AKI. Our findings indicate that LIGHT aggravates inflammation and promotes kidney damage in LPS‐induced SA‐AKI via the TLR4‐Myd88‐NF‐κB signalling pathway, which provide potential strategies for the treatment of SA‐AKI. |
format | Online Article Text |
id | pubmed-7579683 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-75796832020-10-27 LIGHT aggravates sepsis‐associated acute kidney injury via TLR4‐MyD88‐NF‐κB pathway Zhong, Yu Wu, Shun Yang, Yan Li, Gui‐qing Meng, Li Zheng, Quan‐you Li, You Xu, Gui‐lian Zhang, Ke‐qin Peng, Kan‐fu J Cell Mol Med Original Articles Sepsis‐associated acute kidney injury (SA‐AKI) is a common clinical critical care syndrome. It has received increasing attention due to its high morbidity and mortality; however, its pathophysiological mechanisms remain elusive. LIGHT, the 14th member of the tumour necrosis factor (TNF) superfamily and a bidirectional immunoregulatory molecule that regulates inflammation, plays a pivotal role in disease pathogenesis. In this study, mice with an intraperitoneal injection of LPS and HK‐2 cells challenged with LPS were employed as a model of SA‐AKI in vivo and in vitro, respectively. LIGHT deficiency notably attenuated kidney injury in pathological damage and renal function and markedly mitigated the inflammatory reaction by decreasing inflammatory mediator production and inflammatory cell infiltration in vivo. The TLR4‐Myd88‐NF‐κB signalling pathway in the kidney of LIGHT knockout mice was dramatically down‐regulated compared to the controls. Recombinant human LIGHT aggravated LPS‐treated HK‐2 cell injury by up‐regulating the expression of the TLR4‐Myd88‐NF‐κB signalling pathway and inflammation levels. TAK 242 (a selective TLR4 inhibitor) reduced this trend to some extent. In addition, blocking LIGHT with soluble receptor fusion proteins HVEM‐Fc or LTβR‐Fc in mice attenuated renal dysfunction and pathological damage in SA‐AKI. Our findings indicate that LIGHT aggravates inflammation and promotes kidney damage in LPS‐induced SA‐AKI via the TLR4‐Myd88‐NF‐κB signalling pathway, which provide potential strategies for the treatment of SA‐AKI. John Wiley and Sons Inc. 2020-09-03 2020-10 /pmc/articles/PMC7579683/ /pubmed/32881263 http://dx.doi.org/10.1111/jcmm.15815 Text en © 2020 The Authors. Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Zhong, Yu Wu, Shun Yang, Yan Li, Gui‐qing Meng, Li Zheng, Quan‐you Li, You Xu, Gui‐lian Zhang, Ke‐qin Peng, Kan‐fu LIGHT aggravates sepsis‐associated acute kidney injury via TLR4‐MyD88‐NF‐κB pathway |
title | LIGHT aggravates sepsis‐associated acute kidney injury via TLR4‐MyD88‐NF‐κB pathway |
title_full | LIGHT aggravates sepsis‐associated acute kidney injury via TLR4‐MyD88‐NF‐κB pathway |
title_fullStr | LIGHT aggravates sepsis‐associated acute kidney injury via TLR4‐MyD88‐NF‐κB pathway |
title_full_unstemmed | LIGHT aggravates sepsis‐associated acute kidney injury via TLR4‐MyD88‐NF‐κB pathway |
title_short | LIGHT aggravates sepsis‐associated acute kidney injury via TLR4‐MyD88‐NF‐κB pathway |
title_sort | light aggravates sepsis‐associated acute kidney injury via tlr4‐myd88‐nf‐κb pathway |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7579683/ https://www.ncbi.nlm.nih.gov/pubmed/32881263 http://dx.doi.org/10.1111/jcmm.15815 |
work_keys_str_mv | AT zhongyu lightaggravatessepsisassociatedacutekidneyinjuryviatlr4myd88nfkbpathway AT wushun lightaggravatessepsisassociatedacutekidneyinjuryviatlr4myd88nfkbpathway AT yangyan lightaggravatessepsisassociatedacutekidneyinjuryviatlr4myd88nfkbpathway AT liguiqing lightaggravatessepsisassociatedacutekidneyinjuryviatlr4myd88nfkbpathway AT mengli lightaggravatessepsisassociatedacutekidneyinjuryviatlr4myd88nfkbpathway AT zhengquanyou lightaggravatessepsisassociatedacutekidneyinjuryviatlr4myd88nfkbpathway AT liyou lightaggravatessepsisassociatedacutekidneyinjuryviatlr4myd88nfkbpathway AT xuguilian lightaggravatessepsisassociatedacutekidneyinjuryviatlr4myd88nfkbpathway AT zhangkeqin lightaggravatessepsisassociatedacutekidneyinjuryviatlr4myd88nfkbpathway AT pengkanfu lightaggravatessepsisassociatedacutekidneyinjuryviatlr4myd88nfkbpathway |