Cargando…

HIPK2 sustains inflammatory cytokine production by promoting endoplasmic reticulum stress in macrophages

Uncontrolled inflammatory cytokine production by macrophages contributes to numerous conditions, including infection, endotoxemia and sepsis. A previous study proposed that endoplasmic reticulum (ER) stress acts as an essential process in inflammatory cytokine production by macrophages. The present...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Long, Fang, He, Xu, Dayuan, Wang, Guangyi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7579773/
https://www.ncbi.nlm.nih.gov/pubmed/33101464
http://dx.doi.org/10.3892/etm.2020.9301
Descripción
Sumario:Uncontrolled inflammatory cytokine production by macrophages contributes to numerous conditions, including infection, endotoxemia and sepsis. A previous study proposed that endoplasmic reticulum (ER) stress acts as an essential process in inflammatory cytokine production by macrophages. The present study used a mouse sepsis model and in vitro macrophages to demonstrate that homeodomain-interacting protein kinase 2 (HIPK2) sustained cytokine production in an ER stress-dependent manner. HIPK2 expression was upregulated in the early phase of lipopolysaccharide stimulation. HIPK2 knockdown attenuated IL-6 and TNF-α production, and p65 phosphorylation in macrophages. Furthermore, the attenuated cytokine production was abolished by the ER stress agonist tunicamycin. The activation of ER stress increased the levels of IL-6 and TNF-α, and the phosphorylation of p65, in macrophages following knockdown of HIPK2. Furthermore, HIPK2 inhibition attenuated the production of IL-6 and TNF-α in vitro and in vivo. Therefore, HIPK2 sustained inflammatory cytokine production by promoting ER stress in macrophages. Targeting HIPK2 may be a potential strategy for the management of uncontrolled inflammation in clinical settings.