Cargando…
Artificial neural networks improve LDCT lung cancer screening: a comparative validation study
BACKGROUND: This study proposes a prediction model for the automatic assessment of lung cancer risk based on an artificial neural network (ANN) with a data-driven approach to the low-dose computed tomography (LDCT) standardized structure report. METHODS: This comparative validation study analysed a...
Autores principales: | Hsu, Yin-Chen, Tsai, Yuan-Hsiung, Weng, Hsu-Huei, Hsu, Li-Sheng, Tsai, Ying-Huang, Lin, Yu-Ching, Hung, Ming-Szu, Fang, Yu-Hung, Chen, Chien-Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7579928/ https://www.ncbi.nlm.nih.gov/pubmed/33092589 http://dx.doi.org/10.1186/s12885-020-07465-1 |
Ejemplares similares
-
Prediction of fall events during admission using eXtreme gradient boosting: a comparative validation study
por: Hsu, Yin-Chen, et al.
Publicado: (2020) -
Accuracy and complications of CT-guided pulmonary core biopsy in small nodules: a single-center experience
por: Huang, Ming-De, et al.
Publicado: (2019) -
LDCT lung cancer screening in populations at different risk for lung cancer
por: Teles, Gustavo Borges da Silva, et al.
Publicado: (2020) -
LDCT Screening in Smokers in India—A Pilot, Proof-of-Concept Study
por: Parang, Sanghavi, et al.
Publicado: (2021) -
Impact of hypertrophic pulmonary osteoarthropathy on patients with lung cancer
por: Fang, Yu-Hung, et al.
Publicado: (2017)