Cargando…
Pan-cancer analysis of differential DNA methylation patterns
BACKGROUND: DNA methylation is a key epigenetic regulator contributing to cancer development. To understand the role of DNA methylation in tumorigenesis, it is important to investigate and compare differential methylation (DM) patterns between normal and case samples across different cancer types. H...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7579968/ https://www.ncbi.nlm.nih.gov/pubmed/33087120 http://dx.doi.org/10.1186/s12920-020-00780-3 |
_version_ | 1783598701709623296 |
---|---|
author | Shi, Mai Tsui, Stephen Kwok-Wing Wu, Hao Wei, Yingying |
author_facet | Shi, Mai Tsui, Stephen Kwok-Wing Wu, Hao Wei, Yingying |
author_sort | Shi, Mai |
collection | PubMed |
description | BACKGROUND: DNA methylation is a key epigenetic regulator contributing to cancer development. To understand the role of DNA methylation in tumorigenesis, it is important to investigate and compare differential methylation (DM) patterns between normal and case samples across different cancer types. However, current pan-cancer analyses call DM separately for each cancer, which suffers from lower statistical power and fails to provide a comprehensive view for patterns across cancers. METHODS: In this work, we propose a rigorous statistical model, PanDM, to jointly characterize DM patterns across diverse cancer types. PanDM uses the hidden correlations in the combined dataset to improve statistical power through joint modeling. PanDM takes summary statistics from separate analyses as input and performs methylation site clustering, differential methylation detection, and pan-cancer pattern discovery. We demonstrate the favorable performance of PanDM using simulation data. We apply our model to 12 cancer methylome data collected from The Cancer Genome Atlas (TCGA) project. We further conduct ontology- and pathway-enrichment analyses to gain new biological insights into the pan-cancer DM patterns learned by PanDM. RESULTS: PanDM outperforms two types of separate analyses in the power of DM calling in the simulation study. Application of PanDM to TCGA data reveals 37 pan-cancer DM patterns in the 12 cancer methylomes, including both common and cancer-type-specific patterns. These 37 patterns are in turn used to group cancer types. Functional ontology and biological pathways enriched in the non-common patterns not only underpin the cancer-type-specific etiology and pathogenesis but also unveil the common environmental risk factors shared by multiple cancer types. Moreover, we also identify PanDM-specific DM CpG sites that the common strategy fails to detect. CONCLUSIONS: PanDM is a powerful tool that provides a systematic way to investigate aberrant methylation patterns across multiple cancer types. Results from real data analyses suggest a novel angle for us to understand the common and specific DM patterns in different cancers. Moreover, as PanDM works on the summary statistics for each cancer type, the same framework can in principle be applied to pan-cancer analyses of other functional genomic profiles. We implement PanDM as an R package, which is freely available at http://www.sta.cuhk.edu.hk/YWei/PanDM.html. |
format | Online Article Text |
id | pubmed-7579968 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-75799682020-10-22 Pan-cancer analysis of differential DNA methylation patterns Shi, Mai Tsui, Stephen Kwok-Wing Wu, Hao Wei, Yingying BMC Med Genomics Methodology BACKGROUND: DNA methylation is a key epigenetic regulator contributing to cancer development. To understand the role of DNA methylation in tumorigenesis, it is important to investigate and compare differential methylation (DM) patterns between normal and case samples across different cancer types. However, current pan-cancer analyses call DM separately for each cancer, which suffers from lower statistical power and fails to provide a comprehensive view for patterns across cancers. METHODS: In this work, we propose a rigorous statistical model, PanDM, to jointly characterize DM patterns across diverse cancer types. PanDM uses the hidden correlations in the combined dataset to improve statistical power through joint modeling. PanDM takes summary statistics from separate analyses as input and performs methylation site clustering, differential methylation detection, and pan-cancer pattern discovery. We demonstrate the favorable performance of PanDM using simulation data. We apply our model to 12 cancer methylome data collected from The Cancer Genome Atlas (TCGA) project. We further conduct ontology- and pathway-enrichment analyses to gain new biological insights into the pan-cancer DM patterns learned by PanDM. RESULTS: PanDM outperforms two types of separate analyses in the power of DM calling in the simulation study. Application of PanDM to TCGA data reveals 37 pan-cancer DM patterns in the 12 cancer methylomes, including both common and cancer-type-specific patterns. These 37 patterns are in turn used to group cancer types. Functional ontology and biological pathways enriched in the non-common patterns not only underpin the cancer-type-specific etiology and pathogenesis but also unveil the common environmental risk factors shared by multiple cancer types. Moreover, we also identify PanDM-specific DM CpG sites that the common strategy fails to detect. CONCLUSIONS: PanDM is a powerful tool that provides a systematic way to investigate aberrant methylation patterns across multiple cancer types. Results from real data analyses suggest a novel angle for us to understand the common and specific DM patterns in different cancers. Moreover, as PanDM works on the summary statistics for each cancer type, the same framework can in principle be applied to pan-cancer analyses of other functional genomic profiles. We implement PanDM as an R package, which is freely available at http://www.sta.cuhk.edu.hk/YWei/PanDM.html. BioMed Central 2020-10-22 /pmc/articles/PMC7579968/ /pubmed/33087120 http://dx.doi.org/10.1186/s12920-020-00780-3 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Methodology Shi, Mai Tsui, Stephen Kwok-Wing Wu, Hao Wei, Yingying Pan-cancer analysis of differential DNA methylation patterns |
title | Pan-cancer analysis of differential DNA methylation patterns |
title_full | Pan-cancer analysis of differential DNA methylation patterns |
title_fullStr | Pan-cancer analysis of differential DNA methylation patterns |
title_full_unstemmed | Pan-cancer analysis of differential DNA methylation patterns |
title_short | Pan-cancer analysis of differential DNA methylation patterns |
title_sort | pan-cancer analysis of differential dna methylation patterns |
topic | Methodology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7579968/ https://www.ncbi.nlm.nih.gov/pubmed/33087120 http://dx.doi.org/10.1186/s12920-020-00780-3 |
work_keys_str_mv | AT shimai pancanceranalysisofdifferentialdnamethylationpatterns AT tsuistephenkwokwing pancanceranalysisofdifferentialdnamethylationpatterns AT wuhao pancanceranalysisofdifferentialdnamethylationpatterns AT weiyingying pancanceranalysisofdifferentialdnamethylationpatterns |