Cargando…
Graphene-Wrapped Copper Nanoparticles: An Antimicrobial and Biocompatible Nanomaterial with Valuable Properties for Medical Uses
[Image: see text] The great demand for antibacterial, biocompatible, and easily manufactured nanostructures has led to the design and development of graphene-wrapped copper nanoparticles (CuNPs) supported on Si wafers. In this study, we investigated the antibacterial properties of graphene/CuNPs nan...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7581071/ https://www.ncbi.nlm.nih.gov/pubmed/33110960 http://dx.doi.org/10.1021/acsomega.0c00834 |
Sumario: | [Image: see text] The great demand for antibacterial, biocompatible, and easily manufactured nanostructures has led to the design and development of graphene-wrapped copper nanoparticles (CuNPs) supported on Si wafers. In this study, we investigated the antibacterial properties of graphene/CuNPs nanostructures against Gram-positive and Gram-negative bacteria. Additional experiments regarding graphene/CuNPs nanostructures behavior against mouse fibroblast cell line L929 indicated their biocompatibility and consequently render them as model biomaterials for medical uses. Biofunctionalization of graphene/CuNPs nanostructures with a high-molecular-weight protein (green fluorescent protein), which retains its functionality after a “tight binding” on the nanostructure’s surface, opens the way for attaching and other proteins, or biomolecules of great biological interest, to prepare novel biomaterials. |
---|