Cargando…
The Shape of Heavy Droplets on Superhydrophobic Surfaces
[Image: see text] An analytical model is developed to describe the shape of heavy droplets on solid surfaces with arbitrary wetting properties (corresponding to the contact angles ranging from 0 to 180°). This model, based on a surface of revolution by rotating two elliptic arcs, reduces to the elli...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7581271/ https://www.ncbi.nlm.nih.gov/pubmed/33110999 http://dx.doi.org/10.1021/acsomega.0c03700 |
_version_ | 1783598944417218560 |
---|---|
author | Yu, Yang Lv, Cunjing Wang, Lifeng Li, Peiliu |
author_facet | Yu, Yang Lv, Cunjing Wang, Lifeng Li, Peiliu |
author_sort | Yu, Yang |
collection | PubMed |
description | [Image: see text] An analytical model is developed to describe the shape of heavy droplets on solid surfaces with arbitrary wetting properties (corresponding to the contact angles ranging from 0 to 180°). This model, based on a surface of revolution by rotating two elliptic arcs, reduces to the ellipsoid model for a hydrophilic case. Experimental measurements are also conducted to verify the model. It shows that the mean curvature distribution of the developed model agrees well with that of real droplets on hydrophobic surfaces, even on superhydrophobic surfaces. For water droplets with a volume up to 1000 μL on superhydrophobic surfaces having a 162° contact angle, the errors of the predicted heights, maximum radius, and wetting radius using this model are less than 1.7%, which suggests the capability of this model in studying the wettability of heavy droplets. This model provides an accurate theoretical basis for designing and controlling the spread, transport, condensation, and evaporation of heavy droplets on superhydrophobic surfaces. |
format | Online Article Text |
id | pubmed-7581271 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-75812712020-10-26 The Shape of Heavy Droplets on Superhydrophobic Surfaces Yu, Yang Lv, Cunjing Wang, Lifeng Li, Peiliu ACS Omega [Image: see text] An analytical model is developed to describe the shape of heavy droplets on solid surfaces with arbitrary wetting properties (corresponding to the contact angles ranging from 0 to 180°). This model, based on a surface of revolution by rotating two elliptic arcs, reduces to the ellipsoid model for a hydrophilic case. Experimental measurements are also conducted to verify the model. It shows that the mean curvature distribution of the developed model agrees well with that of real droplets on hydrophobic surfaces, even on superhydrophobic surfaces. For water droplets with a volume up to 1000 μL on superhydrophobic surfaces having a 162° contact angle, the errors of the predicted heights, maximum radius, and wetting radius using this model are less than 1.7%, which suggests the capability of this model in studying the wettability of heavy droplets. This model provides an accurate theoretical basis for designing and controlling the spread, transport, condensation, and evaporation of heavy droplets on superhydrophobic surfaces. American Chemical Society 2020-10-07 /pmc/articles/PMC7581271/ /pubmed/33110999 http://dx.doi.org/10.1021/acsomega.0c03700 Text en This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Yu, Yang Lv, Cunjing Wang, Lifeng Li, Peiliu The Shape of Heavy Droplets on Superhydrophobic Surfaces |
title | The Shape of Heavy Droplets on Superhydrophobic Surfaces |
title_full | The Shape of Heavy Droplets on Superhydrophobic Surfaces |
title_fullStr | The Shape of Heavy Droplets on Superhydrophobic Surfaces |
title_full_unstemmed | The Shape of Heavy Droplets on Superhydrophobic Surfaces |
title_short | The Shape of Heavy Droplets on Superhydrophobic Surfaces |
title_sort | shape of heavy droplets on superhydrophobic surfaces |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7581271/ https://www.ncbi.nlm.nih.gov/pubmed/33110999 http://dx.doi.org/10.1021/acsomega.0c03700 |
work_keys_str_mv | AT yuyang theshapeofheavydropletsonsuperhydrophobicsurfaces AT lvcunjing theshapeofheavydropletsonsuperhydrophobicsurfaces AT wanglifeng theshapeofheavydropletsonsuperhydrophobicsurfaces AT lipeiliu theshapeofheavydropletsonsuperhydrophobicsurfaces AT yuyang shapeofheavydropletsonsuperhydrophobicsurfaces AT lvcunjing shapeofheavydropletsonsuperhydrophobicsurfaces AT wanglifeng shapeofheavydropletsonsuperhydrophobicsurfaces AT lipeiliu shapeofheavydropletsonsuperhydrophobicsurfaces |