Cargando…
Training deep neural density estimators to identify mechanistic models of neural dynamics
Mechanistic modeling in neuroscience aims to explain observed phenomena in terms of underlying causes. However, determining which model parameters agree with complex and stochastic neural data presents a significant challenge. We address this challenge with a machine learning tool which uses deep ne...
Autores principales: | Gonçalves, Pedro J, Lueckmann, Jan-Matthis, Deistler, Michael, Nonnenmacher, Marcel, Öcal, Kaan, Bassetto, Giacomo, Chintaluri, Chaitanya, Podlaski, William F, Haddad, Sara A, Vogels, Tim P, Greenberg, David S, Macke, Jakob H |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7581433/ https://www.ncbi.nlm.nih.gov/pubmed/32940606 http://dx.doi.org/10.7554/eLife.56261 |
Ejemplares similares
-
Can Serial Dependencies in Choices and Neural Activity Explain Choice Probabilities?
por: Lueckmann, Jan-Matthis, et al.
Publicado: (2018) -
Flexible and efficient simulation-based inference for models of decision-making
por: Boelts, Jan, et al.
Publicado: (2022) -
Metabolically regulated spiking could serve neuronal energy homeostasis and protect from reactive oxygen species
por: Chintaluri, Chaitanya, et al.
Publicado: (2023) -
Energy-efficient network activity from disparate circuit parameters
por: Deistler, Michael, et al.
Publicado: (2022) -
Mapping the function of neuronal ion channels in model and experiment
por: Podlaski, William F, et al.
Publicado: (2017)