Cargando…
Decoding COVID-19 pneumonia: comparison of deep learning and radiomics CT image signatures
PURPOSE: High-dimensional image features that underlie COVID-19 pneumonia remain opaque. We aim to compare feature engineering and deep learning methods to gain insights into the image features that drive CT-based for COVID-19 pneumonia prediction, and uncover CT image features significant for COVID...
Autores principales: | Wang, Hongmei, Wang, Lu, Lee, Edward H., Zheng, Jimmy, Zhang, Wei, Halabi, Safwan, Liu, Chunlei, Deng, Kexue, Song, Jiangdian, Yeom, Kristen W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7581467/ https://www.ncbi.nlm.nih.gov/pubmed/33094432 http://dx.doi.org/10.1007/s00259-020-05075-4 |
Ejemplares similares
-
Correction to: Decoding COVID-19 pneumonia: comparison of deep learning and radiomics CT image signatures
por: Wang, Hongmei, et al.
Publicado: (2021) -
Multi-classifier-based identification of COVID-19 from chest computed tomography using generalizable and interpretable radiomics features
por: Wang, Lu, et al.
Publicado: (2021) -
End-to-end automatic differentiation of the coronavirus disease 2019 (COVID-19) from viral pneumonia based on chest CT
por: Song, Jiangdian, et al.
Publicado: (2020) -
Correction to: End-to-end automatic differentiation of the coronavirus disease 2019 (COVID-19) from viral pneumonia based on chest CT
por: Song, Jiangdian, et al.
Publicado: (2021) -
A general approach for automatic segmentation of pneumonia, pulmonary nodule, and tuberculosis in CT images
por: Wang, Lu, et al.
Publicado: (2023)