Cargando…
Retinal Boundary Segmentation in Stargardt Disease Optical Coherence Tomography Images Using Automated Deep Learning
PURPOSE: To use a deep learning model to develop a fully automated method (fully semantic network and graph search [FS-GS]) of retinal segmentation for optical coherence tomography (OCT) images from patients with Stargardt disease. METHODS: Eighty-seven manually segmented (ground truth) OCT volume s...
Autores principales: | Kugelman, Jason, Alonso-Caneiro, David, Chen, Yi, Arunachalam, Sukanya, Huang, Di, Vallis, Natasha, Collins, Michael J., Chen, Fred K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7581491/ https://www.ncbi.nlm.nih.gov/pubmed/33133774 http://dx.doi.org/10.1167/tvst.9.11.12 |
Ejemplares similares
-
A review of generative adversarial network applications in optical coherence tomography image analysis
por: Kugelman, Jason, et al.
Publicado: (2022) -
Automated retinal boundary segmentation of optical coherence tomography images using an improved Canny operator
por: Liu, Jian, et al.
Publicado: (2022) -
Reproducibility of Measurements of Retinal Structural Parameters Using Optical Coherence Tomography in Stargardt Disease
por: Kong, Xiangrong, et al.
Publicado: (2019) -
Optical Coherence Tomography Angiography Findings in Stargardt Disease
por: Mastropasqua, Rodolfo, et al.
Publicado: (2017) -
Deep learning segmentation of hyperautofluorescent fleck lesions in Stargardt disease
por: Charng, Jason, et al.
Publicado: (2020)