Cargando…
Variable Smoothing for Convex Optimization Problems Using Stochastic Gradients
We aim to solve a structured convex optimization problem, where a nonsmooth function is composed with a linear operator. When opting for full splitting schemes, usually, primal–dual type methods are employed as they are effective and also well studied. However, under the additional assumption of Lip...
Autores principales: | Boţ, Radu Ioan, Böhm, Axel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7581594/ https://www.ncbi.nlm.nih.gov/pubmed/33122873 http://dx.doi.org/10.1007/s10915-020-01332-8 |
Ejemplares similares
-
Gradient-type penalty method with inertial effects for solving constrained convex optimization problems with smooth data
por: Boţ, Radu Ioan, et al.
Publicado: (2017) -
An Inertial Proximal-Gradient Penalization Scheme for Constrained Convex Optimization Problems
por: Boţ, Radu Ioan, et al.
Publicado: (2017) -
Conjugate Duality in Convex Optimization
por: Bot, Radu Ioan
Publicado: (2010) -
Variable Smoothing for Weakly Convex Composite Functions
por: Böhm, Axel, et al.
Publicado: (2021) -
The Proximal Alternating Minimization Algorithm for Two-Block Separable Convex Optimization Problems with Linear Constraints
por: Bitterlich, Sandy, et al.
Publicado: (2018)