Cargando…
Deep time-delay Markov network for prediction and modeling the stress and emotions state transition
To recognize stress and emotion, most of the existing methods only observe and analyze speech patterns from present-time features. However, an emotion (especially for stress) can change because it was triggered by an event while speaking. To address this issue, we propose a novel method for predicti...
Autores principales: | Prasetio, Barlian Henryranu, Tamura, Hiroki, Tanno, Koichi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7581816/ https://www.ncbi.nlm.nih.gov/pubmed/33093631 http://dx.doi.org/10.1038/s41598-020-75155-w |
Ejemplares similares
-
Markov Transition Field Enhanced Deep Domain Adaptation Network for Milling Tool Condition Monitoring
por: Sun, Wei, et al.
Publicado: (2022) -
Markov-State Transition Path Analysis of Electrostatic
Channeling
por: Liu, Yuanchao, et al.
Publicado: (2019) -
Markov State Models of gene regulatory networks
por: Chu, Brian K., et al.
Publicado: (2017) -
States Transitions Inference of Postpartum Depression Based on Multi-State Markov Model
por: Xiong, Juan, et al.
Publicado: (2021) -
Profiling Delirium Progression in Elderly Patients via Continuous-Time Markov Multi-State Transition Models
por: Ocagli, Honoria, et al.
Publicado: (2021)