Cargando…
Classifying Intracortical Brain-Machine Interface Signal Disruptions Based on System Performance and Applicable Compensatory Strategies: A Review
Brain-machine interfaces (BMIs) record and translate neural activity into a control signal for assistive or other devices. Intracortical microelectrode arrays (MEAs) enable high degree-of-freedom BMI control for complex tasks by providing fine-resolution neural recording. However, chronically implan...
Autores principales: | Dunlap, Collin F., Colachis, Samuel C., Meyers, Eric C., Bockbrader, Marcia A., Friedenberg, David A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7581895/ https://www.ncbi.nlm.nih.gov/pubmed/33162885 http://dx.doi.org/10.3389/fnbot.2020.558987 |
Ejemplares similares
-
Increasing Robustness of Brain–Computer Interfaces Through Automatic Detection and Removal of Corrupted Input Signals
por: Vasko, Jordan L., et al.
Publicado: (2022) -
Intracortical Brain-Machine Interfaces Advance Sensorimotor Neuroscience
por: Schroeder, Karen E., et al.
Publicado: (2016) -
A Brain-Machine Interface Instructed by Direct Intracortical Microstimulation
por: O'Doherty, Joseph E., et al.
Publicado: (2009) -
A Characterization of Brain-Computer Interface Performance Trade-Offs Using Support Vector Machines and Deep Neural Networks to Decode Movement Intent
por: Skomrock, Nicholas D., et al.
Publicado: (2018) -
Dexterous Control of Seven Functional Hand Movements Using Cortically-Controlled Transcutaneous Muscle Stimulation in a Person With Tetraplegia
por: Colachis, Samuel C., et al.
Publicado: (2018)