Cargando…

Mechanism for corrosion protection of β-TCP reinforced ZK60 via laser rapid solidification

It remains the primary issue to enhance the corrosion resistance of Mg alloys for their clinical applications. In this study, β-tricalcium phosphate (β-TCP) was composited with Mg-6Zn-1Zr (ZK60) using laser rapid solidification to improve the degradation behavior. Results revealed rapid solidificati...

Descripción completa

Detalles Bibliográficos
Autores principales: Deng, Youwen, Yang, Youwen, Gao, Chengde, Feng, Pei, Guo, Wang, He, Chongxian, Chen, Jian, Shuai, Cijun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Whioce Publishing Pte. Ltd. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7581996/
https://www.ncbi.nlm.nih.gov/pubmed/33102908
http://dx.doi.org/10.18063/IJB.v4i1.124
Descripción
Sumario:It remains the primary issue to enhance the corrosion resistance of Mg alloys for their clinical applications. In this study, β-tricalcium phosphate (β-TCP) was composited with Mg-6Zn-1Zr (ZK60) using laser rapid solidification to improve the degradation behavior. Results revealed rapid solidification effectively restrained the aggregation of β-TCP, which thus homogenously distributed along grain boundaries of α-Mg. Significantly, the uniformly distributed β-TCP in the matrix promoted the formation of apatite layer on the surface, which contributed to the formation of a compact corrosion product layer, hence retarding the further degradation. Furthermore, ZK60/8β-TCP (wt. %) composite showed improved mechanical strength, as well as improved cytocompatibility. It was suggested that laser rapidly solidified ZK60/8β-TCP composite might be a potential materials for tissue engineering.