Cargando…
Development of a depression in Parkinson's disease prediction model using machine learning
BACKGROUND: It is important to diagnose depression in Parkinson’s disease (DPD) as soon as possible and identify the predictors of depression to improve quality of life in Parkinson’s disease (PD) patients. AIM: To develop a model for predicting DPD based on the support vector machine, while conside...
Autor principal: | Byeon, Haewon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Baishideng Publishing Group Inc
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7582129/ https://www.ncbi.nlm.nih.gov/pubmed/33134114 http://dx.doi.org/10.5498/wjp.v10.i10.234 |
Ejemplares similares
-
Developing a nomogram for predicting depression in diabetic patients after COVID-19 using machine learning
por: Byeon, Haewon
Publicado: (2023) -
Can the prediction model using regression with optimal scale improve the power to predict the Parkinson's dementia?
por: Byeon, Haewon
Publicado: (2022) -
Application of Machine Learning Technique to Distinguish Parkinson’s Disease Dementia and Alzheimer’s Dementia: Predictive Power of Parkinson’s Disease-Related Non-Motor Symptoms and Neuropsychological Profile
por: Byeon, Haewon
Publicado: (2020) -
Best early-onset Parkinson dementia predictor using ensemble learning among Parkinson's symptoms, rapid eye movement sleep disorder, and neuropsychological profile
por: Byeon, Haewon
Publicado: (2020) -
Developing a nomogram for predicting the depression of senior citizens living alone while focusing on perceived social support
por: Byeon, Haewon
Publicado: (2021)