Cargando…

Charge disproportionation and nano phase separation in [Formula: see text]

We have successfully grown centimeter-sized layered [Formula: see text] single crystals under high oxygen pressures of 120–150 bar by the floating zone technique. This enabled us to perform neutron scattering experiments where we observe close to quarter-integer magnetic peaks below [Formula: see te...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, H., Li, Z. W., Chang, C. F., Hu, Z., Kuo, C.-Y., Perring, T. G., Schmidt, W., Piovano, A., Schmalzl, K., Walker, H. C., Lin, H. J., Chen, C. T., Blanco-Canosa, S., Schlappa, J., Schüßler-Langeheine, C., Hansmann, P., Khomskii, D. I., Tjeng, L. H., Komarek, A. C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7582202/
https://www.ncbi.nlm.nih.gov/pubmed/33093480
http://dx.doi.org/10.1038/s41598-020-74884-2
_version_ 1783599141121687552
author Guo, H.
Li, Z. W.
Chang, C. F.
Hu, Z.
Kuo, C.-Y.
Perring, T. G.
Schmidt, W.
Piovano, A.
Schmalzl, K.
Walker, H. C.
Lin, H. J.
Chen, C. T.
Blanco-Canosa, S.
Schlappa, J.
Schüßler-Langeheine, C.
Hansmann, P.
Khomskii, D. I.
Tjeng, L. H.
Komarek, A. C.
author_facet Guo, H.
Li, Z. W.
Chang, C. F.
Hu, Z.
Kuo, C.-Y.
Perring, T. G.
Schmidt, W.
Piovano, A.
Schmalzl, K.
Walker, H. C.
Lin, H. J.
Chen, C. T.
Blanco-Canosa, S.
Schlappa, J.
Schüßler-Langeheine, C.
Hansmann, P.
Khomskii, D. I.
Tjeng, L. H.
Komarek, A. C.
author_sort Guo, H.
collection PubMed
description We have successfully grown centimeter-sized layered [Formula: see text] single crystals under high oxygen pressures of 120–150 bar by the floating zone technique. This enabled us to perform neutron scattering experiments where we observe close to quarter-integer magnetic peaks below [Formula: see text] that are accompanied by steep upwards dispersing spin excitations. Within the high-frequency Ni–O bond stretching phonon dispersion, a softening at the propagation vector for a checkerboard modulation can be observed. We were able to simulate the magnetic excitation spectra using a model that includes two essential ingredients, namely checkerboard charge disproportionation and nano phase separation. The results thus suggest that charge disproportionation is preferred instead of a Jahn–Teller distortion even for this layered [Formula: see text] system.
format Online
Article
Text
id pubmed-7582202
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-75822022020-10-23 Charge disproportionation and nano phase separation in [Formula: see text] Guo, H. Li, Z. W. Chang, C. F. Hu, Z. Kuo, C.-Y. Perring, T. G. Schmidt, W. Piovano, A. Schmalzl, K. Walker, H. C. Lin, H. J. Chen, C. T. Blanco-Canosa, S. Schlappa, J. Schüßler-Langeheine, C. Hansmann, P. Khomskii, D. I. Tjeng, L. H. Komarek, A. C. Sci Rep Article We have successfully grown centimeter-sized layered [Formula: see text] single crystals under high oxygen pressures of 120–150 bar by the floating zone technique. This enabled us to perform neutron scattering experiments where we observe close to quarter-integer magnetic peaks below [Formula: see text] that are accompanied by steep upwards dispersing spin excitations. Within the high-frequency Ni–O bond stretching phonon dispersion, a softening at the propagation vector for a checkerboard modulation can be observed. We were able to simulate the magnetic excitation spectra using a model that includes two essential ingredients, namely checkerboard charge disproportionation and nano phase separation. The results thus suggest that charge disproportionation is preferred instead of a Jahn–Teller distortion even for this layered [Formula: see text] system. Nature Publishing Group UK 2020-10-22 /pmc/articles/PMC7582202/ /pubmed/33093480 http://dx.doi.org/10.1038/s41598-020-74884-2 Text en © The Author(s) 2020 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Guo, H.
Li, Z. W.
Chang, C. F.
Hu, Z.
Kuo, C.-Y.
Perring, T. G.
Schmidt, W.
Piovano, A.
Schmalzl, K.
Walker, H. C.
Lin, H. J.
Chen, C. T.
Blanco-Canosa, S.
Schlappa, J.
Schüßler-Langeheine, C.
Hansmann, P.
Khomskii, D. I.
Tjeng, L. H.
Komarek, A. C.
Charge disproportionation and nano phase separation in [Formula: see text]
title Charge disproportionation and nano phase separation in [Formula: see text]
title_full Charge disproportionation and nano phase separation in [Formula: see text]
title_fullStr Charge disproportionation and nano phase separation in [Formula: see text]
title_full_unstemmed Charge disproportionation and nano phase separation in [Formula: see text]
title_short Charge disproportionation and nano phase separation in [Formula: see text]
title_sort charge disproportionation and nano phase separation in [formula: see text]
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7582202/
https://www.ncbi.nlm.nih.gov/pubmed/33093480
http://dx.doi.org/10.1038/s41598-020-74884-2
work_keys_str_mv AT guoh chargedisproportionationandnanophaseseparationinformulaseetext
AT lizw chargedisproportionationandnanophaseseparationinformulaseetext
AT changcf chargedisproportionationandnanophaseseparationinformulaseetext
AT huz chargedisproportionationandnanophaseseparationinformulaseetext
AT kuocy chargedisproportionationandnanophaseseparationinformulaseetext
AT perringtg chargedisproportionationandnanophaseseparationinformulaseetext
AT schmidtw chargedisproportionationandnanophaseseparationinformulaseetext
AT piovanoa chargedisproportionationandnanophaseseparationinformulaseetext
AT schmalzlk chargedisproportionationandnanophaseseparationinformulaseetext
AT walkerhc chargedisproportionationandnanophaseseparationinformulaseetext
AT linhj chargedisproportionationandnanophaseseparationinformulaseetext
AT chenct chargedisproportionationandnanophaseseparationinformulaseetext
AT blancocanosas chargedisproportionationandnanophaseseparationinformulaseetext
AT schlappaj chargedisproportionationandnanophaseseparationinformulaseetext
AT schußlerlangeheinec chargedisproportionationandnanophaseseparationinformulaseetext
AT hansmannp chargedisproportionationandnanophaseseparationinformulaseetext
AT khomskiidi chargedisproportionationandnanophaseseparationinformulaseetext
AT tjenglh chargedisproportionationandnanophaseseparationinformulaseetext
AT komarekac chargedisproportionationandnanophaseseparationinformulaseetext