Cargando…
Charge disproportionation and nano phase separation in [Formula: see text]
We have successfully grown centimeter-sized layered [Formula: see text] single crystals under high oxygen pressures of 120–150 bar by the floating zone technique. This enabled us to perform neutron scattering experiments where we observe close to quarter-integer magnetic peaks below [Formula: see te...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7582202/ https://www.ncbi.nlm.nih.gov/pubmed/33093480 http://dx.doi.org/10.1038/s41598-020-74884-2 |
_version_ | 1783599141121687552 |
---|---|
author | Guo, H. Li, Z. W. Chang, C. F. Hu, Z. Kuo, C.-Y. Perring, T. G. Schmidt, W. Piovano, A. Schmalzl, K. Walker, H. C. Lin, H. J. Chen, C. T. Blanco-Canosa, S. Schlappa, J. Schüßler-Langeheine, C. Hansmann, P. Khomskii, D. I. Tjeng, L. H. Komarek, A. C. |
author_facet | Guo, H. Li, Z. W. Chang, C. F. Hu, Z. Kuo, C.-Y. Perring, T. G. Schmidt, W. Piovano, A. Schmalzl, K. Walker, H. C. Lin, H. J. Chen, C. T. Blanco-Canosa, S. Schlappa, J. Schüßler-Langeheine, C. Hansmann, P. Khomskii, D. I. Tjeng, L. H. Komarek, A. C. |
author_sort | Guo, H. |
collection | PubMed |
description | We have successfully grown centimeter-sized layered [Formula: see text] single crystals under high oxygen pressures of 120–150 bar by the floating zone technique. This enabled us to perform neutron scattering experiments where we observe close to quarter-integer magnetic peaks below [Formula: see text] that are accompanied by steep upwards dispersing spin excitations. Within the high-frequency Ni–O bond stretching phonon dispersion, a softening at the propagation vector for a checkerboard modulation can be observed. We were able to simulate the magnetic excitation spectra using a model that includes two essential ingredients, namely checkerboard charge disproportionation and nano phase separation. The results thus suggest that charge disproportionation is preferred instead of a Jahn–Teller distortion even for this layered [Formula: see text] system. |
format | Online Article Text |
id | pubmed-7582202 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-75822022020-10-23 Charge disproportionation and nano phase separation in [Formula: see text] Guo, H. Li, Z. W. Chang, C. F. Hu, Z. Kuo, C.-Y. Perring, T. G. Schmidt, W. Piovano, A. Schmalzl, K. Walker, H. C. Lin, H. J. Chen, C. T. Blanco-Canosa, S. Schlappa, J. Schüßler-Langeheine, C. Hansmann, P. Khomskii, D. I. Tjeng, L. H. Komarek, A. C. Sci Rep Article We have successfully grown centimeter-sized layered [Formula: see text] single crystals under high oxygen pressures of 120–150 bar by the floating zone technique. This enabled us to perform neutron scattering experiments where we observe close to quarter-integer magnetic peaks below [Formula: see text] that are accompanied by steep upwards dispersing spin excitations. Within the high-frequency Ni–O bond stretching phonon dispersion, a softening at the propagation vector for a checkerboard modulation can be observed. We were able to simulate the magnetic excitation spectra using a model that includes two essential ingredients, namely checkerboard charge disproportionation and nano phase separation. The results thus suggest that charge disproportionation is preferred instead of a Jahn–Teller distortion even for this layered [Formula: see text] system. Nature Publishing Group UK 2020-10-22 /pmc/articles/PMC7582202/ /pubmed/33093480 http://dx.doi.org/10.1038/s41598-020-74884-2 Text en © The Author(s) 2020 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Guo, H. Li, Z. W. Chang, C. F. Hu, Z. Kuo, C.-Y. Perring, T. G. Schmidt, W. Piovano, A. Schmalzl, K. Walker, H. C. Lin, H. J. Chen, C. T. Blanco-Canosa, S. Schlappa, J. Schüßler-Langeheine, C. Hansmann, P. Khomskii, D. I. Tjeng, L. H. Komarek, A. C. Charge disproportionation and nano phase separation in [Formula: see text] |
title | Charge disproportionation and nano phase separation in [Formula: see text] |
title_full | Charge disproportionation and nano phase separation in [Formula: see text] |
title_fullStr | Charge disproportionation and nano phase separation in [Formula: see text] |
title_full_unstemmed | Charge disproportionation and nano phase separation in [Formula: see text] |
title_short | Charge disproportionation and nano phase separation in [Formula: see text] |
title_sort | charge disproportionation and nano phase separation in [formula: see text] |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7582202/ https://www.ncbi.nlm.nih.gov/pubmed/33093480 http://dx.doi.org/10.1038/s41598-020-74884-2 |
work_keys_str_mv | AT guoh chargedisproportionationandnanophaseseparationinformulaseetext AT lizw chargedisproportionationandnanophaseseparationinformulaseetext AT changcf chargedisproportionationandnanophaseseparationinformulaseetext AT huz chargedisproportionationandnanophaseseparationinformulaseetext AT kuocy chargedisproportionationandnanophaseseparationinformulaseetext AT perringtg chargedisproportionationandnanophaseseparationinformulaseetext AT schmidtw chargedisproportionationandnanophaseseparationinformulaseetext AT piovanoa chargedisproportionationandnanophaseseparationinformulaseetext AT schmalzlk chargedisproportionationandnanophaseseparationinformulaseetext AT walkerhc chargedisproportionationandnanophaseseparationinformulaseetext AT linhj chargedisproportionationandnanophaseseparationinformulaseetext AT chenct chargedisproportionationandnanophaseseparationinformulaseetext AT blancocanosas chargedisproportionationandnanophaseseparationinformulaseetext AT schlappaj chargedisproportionationandnanophaseseparationinformulaseetext AT schußlerlangeheinec chargedisproportionationandnanophaseseparationinformulaseetext AT hansmannp chargedisproportionationandnanophaseseparationinformulaseetext AT khomskiidi chargedisproportionationandnanophaseseparationinformulaseetext AT tjenglh chargedisproportionationandnanophaseseparationinformulaseetext AT komarekac chargedisproportionationandnanophaseseparationinformulaseetext |