Cargando…
Deep Learning in Gait Parameter Prediction for OA and TKA Patients Wearing IMU Sensors
Quantitative assessments of patient movement quality in osteoarthritis (OA), specifically spatiotemporal gait parameters (STGPs), can provide in-depth insight into gait patterns, activity types, and changes in mobility after total knee arthroplasty (TKA). A study was conducted to benchmark the abili...
Autores principales: | Sharifi Renani, Mohsen, Myers, Casey A., Zandie, Rohola, Mahoor, Mohammad H., Davidson, Bradley S., Clary, Chadd W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7582246/ https://www.ncbi.nlm.nih.gov/pubmed/32998329 http://dx.doi.org/10.3390/s20195553 |
Ejemplares similares
-
The Use of Synthetic IMU Signals in the Training of Deep Learning Models Significantly Improves the Accuracy of Joint Kinematic Predictions
por: Sharifi Renani, Mohsen, et al.
Publicado: (2021) -
BioMAT: An Open-Source Biomechanics Multi-Activity Transformer for Joint Kinematic Predictions Using Wearable Sensors
por: Sharifi-Renani, Mohsen, et al.
Publicado: (2023) -
Accuracy of Measuring Knee Flexion after TKA through Wearable IMU Sensors
por: Antunes, Ricardo, et al.
Publicado: (2021) -
Reliability of IMU-Derived Temporal Gait Parameters in Neurological Diseases
por: Hansen, Clint, et al.
Publicado: (2022) -
Principal Characteristics of Affected and Unaffected Side Trunk Movement and Gait Event Parameters during Hemiplegic Stroke Gait with IMU Sensor
por: Seo, Jeong-Woo, et al.
Publicado: (2020)